1
0
Fork 0
wynnbuilder-forked-for-changes/expr_parser.md

8.2 KiB

This file contains notes on how the parser implemented in expr_parser.js is designed. The nominal grammar is as follows:

expr := conj

exprList := exprList "," expr
          | expr

conj := conj "&" disj
      | disj

disj := disj "|" cmpEq
      | cmpEq

cmpEq := cmpEq "=" cmpRel
       | cmpEq "!=" cmpRel
       | cmpEq "?=" cmpRel
       | cmpRel

cmpRel := cmpRel "<=" sum
        | cmpRel "<" sum
        | cmpRel ">" sum
        | cmpRel ">=" sum
        | sum

sum := sum "+" prod
     | sum "-" prod
     | prod

prod := prod "*" exp
      | prod "/" exp
      | exp

exp := exp "^" unary
     | unary

unary := "-" unary
       | "!" unary
       | prim

prim := nLit
      | bLit
      | sLit
      | ident "(" args ")"
      | ident
      | "(" expr ")"

args := exprList
      | ε

In order to eliminate left-recursion, the above grammar is transformed into the following:

expr := conj

exprList := expr exprListTail

exprList' := "," expr exprList'
           | ε

conj := disj conj'

conj' := "&" disj conj'
       | ε

disj := cmpEq disj'

disj' := "|" cmpEq disj'
       | ε

cmpEq := cmpRel cmpEq'

cmpEq' := "=" cmpRel cmpEq'
        | "!=" cmpRel cmpEq'
        | "?=" cmpRel cmpEq'
        | ε

cmpRel := sum cmpRel'

cmpRel' := "<=" sum cmpRel'
         | "<" sum cmpRel'
         | ">" sum cmpRel'
         | ">=" sum cmpRel'
         | ε

sum := prod sum'

sum' := "+" prod sum'
      | "-" prod sum'
      | ε

prod := exp prod'

prod' := "*" exp prod'
       | "/" exp prod'
       | ε

exp := unary exp'

exp' := "^" unary exp'
      | ε

unary := "-" unary
       | "!" unary
       | prim

prim := nLit
      | bLit
      | sLit
      | ident identTail
      | "(" expr ")"

identTail := "(" args ")"
           | ε

args := exprList
      | ε

The parser itself is a recursive-descent LL(1) parser. To build the parsing rules, the following FIRST and FOLLOW sets are computed for the above grammar:

Nonterminal FIRST
expr "!", "(", "-", bLit, ident, nLit, sLit
exprList "!", "(", "-", bLit, ident, nLit, sLit
exprList' ",", ε
conj "!", "(", "-", bLit, ident, nLit, sLit
conj' "&", ε
disj "!", "(", "-", bLit, ident, nLit, sLit
disj' "|", ε
cmpEq "!", "(", "-", bLit, ident, nLit, sLit
cmpEq' "!=", "=", "?=", ε
cmpRel "!", "(", "-", bLit, ident, nLit, sLit
cmpRel' "<", "<=", ">", ">=", ε
sum "!", "(", "-", bLit, ident, nLit, sLit
sum' "+", "-", ε
prod "!", "(", "-", bLit, ident, nLit, sLit
prod' "*", "/", ε
exp "!", "(", "-", bLit, ident, nLit, sLit
exp' "^", ε
unary "!", "(", "-", bLit, ident, nLit, sLit
prim "(", bLit, ident, nLit, sLit
identTail "(", ε
args "!", "(", "-", bLit, ident, nLit, sLit, ε
Nonterminal FOLLOW
expr ")", ",", $
exprList ")"
exprList' ")"
conj ")", ","
conj' ")", ","
disj "&", ")", ","
disj' "&", ")", ","
cmpEq "&", ")", ",", "|"
cmpEq' "&", ")", ",", "|"
cmpRel "!=", "&", ")", ",", "=", "?=", "|"
cmpRel' "!=", "&", ")", ",", "=", "?=", "|"
sum "!=", "&", ")", ",", "<", "<=", "=", ">", ">=", "?=", "|"
sum' "!=", "&", ")", ",", "<", "<=", "=", ">", ">=", "?=", "|"
prod "!=", "&", ")", "+", ",", "-", "<", "<=", "=", ">", ">=", "?=", "|"
prod' "!=", "&", ")", "+", ",", "-", "<", "<=", "=", ">", ">=", "?=", "|"
exp "!=", "&", ")", "*", "+", ",", "-", "/", "<", "<=", "=", ">", ">=", "?=", "|"
exp' "!=", "&", ")", "*", "+", ",", "-", "/", "<", "<=", "=", ">", ">=", "?=", "|"
unary "!=", "&", ")", "*", "+", ",", "-", "/", "<", "<=", "=", ">", ">=", "?=", "^", "|"
prim "!=", "&", ")", "*", "+", ",", "-", "/", "<", "<=", "=", ">", ">=", "?=", "^", "|"
identTail "!=", "&", ")", "*", "+", ",", "-", "/", "<", "<=", "=", ">", ">=", "?=", "^", "|"
args ")"

Then, the parsing rule table is as follows, where each table entry refers to the production number for the given nonterminal:

Nonterminal "!" "!=" "&" "(" ")" "*" "+" "," "-" "/" "<" "<=" "=" ">" ">=" "?=" "^" "|" bLit ident nLit sLit $
expr 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
exprList 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
exprList' - - - - 1 - - 0 - - - - - - - - - - - - - - 1
conj 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
conj' - - 0 - 1 - - 1 - - - - - - - - - - - - - - 1
disj 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
disj' - - 1 - 1 - - 1 - - - - - - - - - 0 - - - - 1
cmpEq 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
cmpEq' - 1 3 - 3 - - 3 - - - - 0 - - 2 - 3 - - - - 3
cmpRel 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
cmpRel' - 4 4 - 4 - - 4 - - 1 0 4 2 3 4 - 4 - - - - 4
sum 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
sum' - 2 2 - 2 - 0 2 1 - 2 2 2 2 2 2 - 2 - - - - 2
prod 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
prod' - 2 2 - 2 0 2 2 2 1 2 2 2 2 2 2 - 2 - - - - 2
exp 0 - - 0 - - - - 0 - - - - - - - - - 0 0 0 0 -
exp' - 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 0 1 - - - - 1
unary 1 - - 2 - - - - 0 - - - - - - - - - 2 2 2 2 -
prim - - - 4 - - - - - - - - - - - - - - 1 3 0 2 -
identTail - 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - - - - 1
args 0 - - 0 1 - - - 0 - - - - - - - - - 0 0 0 0 1