Ryujinx-git/ARMeilleure/Instructions/InstEmitSimdCmp32.cs
riperiperi b1b6f294f2
Add most of the A32 instruction set to ARMeilleure (#897)
* Implement TEQ and MOV (Imm16)

* Initial work on A32 instructions + SVC. No tests yet, hangs in rtld.

* Implement CLZ, fix BFI and BFC

Now stops on SIMD initialization.

* Exclusive access instructions, fix to mul, system instructions.

Now gets to a break after SignalProcessWideKey64.

* Better impl of UBFX, add UDIV and SDIV

Now boots way further - now stuck on VMOV instruction.

* Many more instructions, start on SIMD and testing framework.

* Fix build issues

* svc: Rework 32 bit codepath

Fixing once and for all argument ordering issues.

* Fix 32 bits stacktrace

* hle debug: Add 32 bits dynamic section parsing

* Fix highCq mode, add many tests, fix some instruction bugs

Still suffers from critical malloc failure 😩

* Fix incorrect opcode decoders and a few more instructions.

* Add a few instructions and fix others. re-disable highCq for now.

Disabled the svc memory clear since i'm not sure about it.

* Fix build

* Fix typo in ordered/exclusive stores.

* Implement some more instructions, fix others.

Uxtab16/Sxtab16 are untested.

* Begin impl of pairwise, some other instructions.

* Add a few more instructions, a quick hack to fix svcs for now.

* Add tests and fix issues with VTRN, VZIP, VUZP

* Add a few more instructions, fix Vmul_1 encoding.

* Fix way too many instruction bugs, add tests for some of the more important ones.

* Fix HighCq, enable FastFP paths for some floating point instructions

(not entirely sure why these were disabled, so important to note this
commit exists)

Branching has been removed in A32 shifts until I figure out if it's
worth it

* Cleanup Part 1

There should be no functional change between these next few commits.
Should is the key word. (except for removing break handler)

* Implement 32 bits syscalls

Co-authored-by: riperiperi <rhy3756547@hotmail.com>

Implement all 32 bits counterparts of the 64 bits syscalls we currently
have.

* Refactor part 2: Move index/subindex logic to Operand

May have inadvertently fixed one (1) bug

* Add FlushProcessDataCache32

* Address jd's comments

* Remove 16 bit encodings from OpCodeTable

Still need to catch some edge cases (operands that use the "F" flag) and
make Q encodings with non-even indexes undefined.

* Correct Fpscr handling for FP vector slow paths

WIP

* Add StandardFPSCRValue behaviour for all Arithmetic instructions

* Add StandardFPSCRValue behaviour to compare instructions.

* Force passing of fpcr to FPProcessException and FPUnpack.

Reduces potential for code error significantly

* OpCode cleanup

* Remove urgency from DMB comment in MRRC

DMB is currently a no-op via the instruction, so it should likely still
be a no-op here.

* Test Cleanup

* Fix FPDefaultNaN on Ryzen CPUs

* Improve some tests, fix some shift instructions, add slow path for Vadd

* Fix Typo

* More test cleanup

* Flip order of Fx and index, to indicate that the operand's is the "base"

* Remove Simd32 register type, use Int32 and Int64 for scalars like A64 does.

* Reintroduce alignment to DecoderHelper (removed by accident)

* One more realign as reading diffs is hard

* Use I32 registers in A32 (part 2)

Swap default integer register type based on current execution mode.

* FPSCR flags as Registers (part 1)

Still need to change NativeContext and ExecutionContext to allow
getting/setting with the flag values.

* Use I32 registers in A32 (part 1)

* FPSCR flags as registers (part 2)

Only CMP flags are on the registers right now. It could be useful to use
more of the space in non-fast-float when implementing A32 flags
accurately in the fast path.

* Address Feedback

* Correct FP->Int behaviour (should saturate)

* Make branches made by writing to PC eligible for Rejit

Greatly improves performance in most games.

* Remove unused branching for Vtbl

* RejitRequest as a class rather than a tuple

Makes a lot more sense than storing tuples on a dictionary.

* Add VMOVN, VSHR (imm), VSHRN (imm) and related tests

* Re-order InstEmitSystem32

Alphabetical sorting.

* Address Feedback

Feedback from Ac_K, remove and sort usings.

* Address Feedback 2

* Address Feedback from LDj3SNuD

Opcode table reordered to have alphabetical sorting within groups,
Vmaxnm and Vminnm have split names to be less ambiguous, SoftFloat nits,
Test nits and Test simplification with ValueSource.

* Add Debug Asserts to A32 helpers

Mainly to prevent the shift ones from being used on I64 operands, as
they expect I32 input for most operations (eg. carry flag setting), and
expect I32 input for shift and boolean amounts. Most other helper
functions don't take Operands, throw on out of range values, and take
specific types of OpCode, so didn't need any asserts.

* Use ConstF rather than creating an operand.

(useful for pooling in future)

* Move exclusive load to helper, reference call flag rather than literal 1.

* Address LDj feedback (minus table flatten)

one final look before it's all gone. the world is so beautiful.

* Flatten OpCodeTable

oh no

* Address more table ordering

* Call Flag as int on A32

Co-authored-by: Natalie C. <cyuubiapps@gmail.com>
Co-authored-by: Thog <thog@protonmail.com>
2020-02-24 08:20:40 +11:00

273 lines
8.6 KiB
C#

using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.State;
using ARMeilleure.Translation;
using System;
using static ARMeilleure.Instructions.InstEmitHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper32;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.Instructions
{
using Func2I = Func<Operand, Operand, Operand>;
static partial class InstEmit32
{
public static void Vceq_V(ArmEmitterContext context)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareEQFpscr, SoftFloat64.FPCompareEQFpscr, false);
}
public static void Vceq_I(ArmEmitterContext context)
{
EmitCmpOpI32(context, context.ICompareEqual, context.ICompareEqual, false, false);
}
public static void Vceq_Z(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
if (op.F)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareEQFpscr, SoftFloat64.FPCompareEQFpscr, true);
}
else
{
EmitCmpOpI32(context, context.ICompareEqual, context.ICompareEqual, true, false);
}
}
public static void Vcge_V(ArmEmitterContext context)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareGEFpscr, SoftFloat64.FPCompareGEFpscr, false);
}
public static void Vcge_I(ArmEmitterContext context)
{
OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
EmitCmpOpI32(context, context.ICompareGreaterOrEqual, context.ICompareGreaterOrEqualUI, false, !op.U);
}
public static void Vcge_Z(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
if (op.F)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareGEFpscr, SoftFloat64.FPCompareGEFpscr, true);
}
else
{
EmitCmpOpI32(context, context.ICompareGreaterOrEqual, context.ICompareGreaterOrEqualUI, true, true);
}
}
public static void Vcgt_V(ArmEmitterContext context)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareGTFpscr, SoftFloat64.FPCompareGTFpscr, false);
}
public static void Vcgt_I(ArmEmitterContext context)
{
OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
EmitCmpOpI32(context, context.ICompareGreater, context.ICompareGreaterUI, false, !op.U);
}
public static void Vcgt_Z(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
if (op.F)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareGTFpscr, SoftFloat64.FPCompareGTFpscr, true);
}
else
{
EmitCmpOpI32(context, context.ICompareGreater, context.ICompareGreaterUI, true, true);
}
}
public static void Vcle_Z(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
if (op.F)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareLEFpscr, SoftFloat64.FPCompareLEFpscr, true);
}
else
{
EmitCmpOpI32(context, context.ICompareLessOrEqual, context.ICompareLessOrEqualUI, true, true);
}
}
public static void Vclt_Z(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
if (op.F)
{
EmitCmpOpF32(context, SoftFloat32.FPCompareLTFpscr, SoftFloat64.FPCompareLTFpscr, true);
}
else
{
EmitCmpOpI32(context, context.ICompareLess, context.ICompareLessUI, true, true);
}
}
private static void EmitCmpOpF32(
ArmEmitterContext context,
_F32_F32_F32_Bool f32,
_F64_F64_F64_Bool f64,
bool zero)
{
Operand one = Const(1);
if (zero)
{
EmitVectorUnaryOpF32(context, (m) =>
{
OperandType type = m.Type;
if (type == OperandType.FP64)
{
return context.Call(f64, m, ConstF(0.0), one);
}
else
{
return context.Call(f32, m, ConstF(0.0f), one);
}
});
}
else
{
EmitVectorBinaryOpF32(context, (n, m) =>
{
OperandType type = n.Type;
if (type == OperandType.FP64)
{
return context.Call(f64, n, m, one);
}
else
{
return context.Call(f32, n, m, one);
}
});
}
}
private static Operand ZerosOrOnes(ArmEmitterContext context, Operand fromBool, OperandType baseType)
{
var ones = (baseType == OperandType.I64) ? Const(-1L) : Const(-1);
return context.ConditionalSelect(fromBool, ones, Const(baseType, 0L));
}
private static void EmitCmpOpI32(
ArmEmitterContext context,
Func2I signedOp,
Func2I unsignedOp,
bool zero,
bool signed)
{
if (zero)
{
if (signed)
{
EmitVectorUnaryOpSx32(context, (m) =>
{
OperandType type = m.Type;
Operand zeroV = (type == OperandType.I64) ? Const(0L) : Const(0);
return ZerosOrOnes(context, signedOp(m, zeroV), type);
});
}
else
{
EmitVectorUnaryOpZx32(context, (m) =>
{
OperandType type = m.Type;
Operand zeroV = (type == OperandType.I64) ? Const(0L) : Const(0);
return ZerosOrOnes(context, unsignedOp(m, zeroV), type);
});
}
}
else
{
if (signed)
{
EmitVectorBinaryOpSx32(context, (n, m) => ZerosOrOnes(context, signedOp(n, m), n.Type));
}
else
{
EmitVectorBinaryOpZx32(context, (n, m) => ZerosOrOnes(context, unsignedOp(n, m), n.Type));
}
}
}
public static void Vcmp(ArmEmitterContext context)
{
EmitVcmpOrVcmpe(context, false);
}
public static void Vcmpe(ArmEmitterContext context)
{
EmitVcmpOrVcmpe(context, true);
}
private static void EmitVcmpOrVcmpe(ArmEmitterContext context, bool signalNaNs)
{
OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;
bool cmpWithZero = (op.Opc & 2) != 0;
{
int fSize = op.Size & 1;
OperandType type = fSize != 0 ? OperandType.FP64 : OperandType.FP32;
Operand ne = ExtractScalar(context, type, op.Vd);
Operand me;
if (cmpWithZero)
{
me = fSize == 0 ? ConstF(0f) : ConstF(0d);
}
else
{
me = ExtractScalar(context, type, op.Vm);
}
Delegate dlg = fSize != 0
? (Delegate)new _S32_F64_F64_Bool(SoftFloat64.FPCompare)
: (Delegate)new _S32_F32_F32_Bool(SoftFloat32.FPCompare);
Operand nzcv = context.Call(dlg, ne, me, Const(signalNaNs));
EmitSetFPSCRFlags(context, nzcv);
}
}
private static void EmitSetFPSCRFlags(ArmEmitterContext context, Operand nzcv)
{
Operand Extract(Operand value, int bit)
{
if (bit != 0)
{
value = context.ShiftRightUI(value, Const(bit));
}
value = context.BitwiseAnd(value, Const(1));
return value;
}
SetFpFlag(context, FPState.VFlag, Extract(nzcv, 0));
SetFpFlag(context, FPState.CFlag, Extract(nzcv, 1));
SetFpFlag(context, FPState.ZFlag, Extract(nzcv, 2));
SetFpFlag(context, FPState.NFlag, Extract(nzcv, 3));
}
}
}