Added files

This commit is contained in:
sgeard 2023-06-09 21:07:25 +01:00 committed by GitHub
parent 76acd3ac4c
commit 7cb24ceba3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 2505 additions and 0 deletions

49
GNUmakefile Normal file
View file

@ -0,0 +1,49 @@
.PHONY: veryclean clean force export help
ifdef debug
F_OPTS := -ggdb
endif
F:= ifort
SRC := rpn_stack.f90 rpn_stack_sm.f90 linked_list.f90 amap.f90
OBJ := $(SRC:%.f90=%.o)
hp: hp.f90 $(OBJ)
$(F) -o $@ hp.f90 $(OBJ) $(F_OPTS)
hp.exe: hp.f90 GNUmakefile
$(F) -o $@ $< $(F_OPTS)
rpn_stack_sm.o: rpn_stack_sm.f90
$(F) -c -o $@ $< $(F_OPTS)
rpn_stack.o: rpn_stack.f90
$(F) -c -o $@ $< $(F_OPTS)
linked_list.o: linked_list.f90
$(F) -c -o $@ $< $(F_OPTS)
amap.o: amap.f90
$(F) -c -o $@ $< $(F_OPTS)
test_amap: test_amap.f90 amap.o
$(F) -o $@ test_amap.f90 amap.o
clean:
@rm -vf *.o *.mod *.smod *~
veryclean: clean
@rm -vf hp hp.exe hp.tar
force: veryclean
$(MAKE)
export: hp.tar
hp.tar: GNUmakefile hp.f90 $(SRC)
tar cf $@ hp.f90 $(SRC) GNUmakefile
help:
@echo "SRC = $(SRC)"
@echo "OBJ = $(OBJ)"

195
amap.f90 Normal file
View file

@ -0,0 +1,195 @@
! Associative map string -> real(8)
module amap
implicit none
! The key
type key_t
private
character(len=16) :: k = '-'
contains
procedure, private :: equals_key_t
generic, public :: operator(==) => equals_key_t
procedure, private :: write_key_t
generic, public :: write(formatted) => write_key_t
procedure, private :: set_to_key_t
generic, public :: assignment(=) => set_to_key_t
end type key_t
! The value
type value_t
private
real(8) :: v = huge(0.0d0) ! An out-of-band value
contains
procedure, private :: write_value_t
generic, public :: write(formatted) => write_value_t
procedure, private :: set_to_value_t
generic, public :: assignment(=) => set_to_value_t
end type value_t
! Map elements are (key,value) pairs
type pair_t
type(key_t) :: k = key_t()
type(value_t) :: v = value_t()
end type pair_t
! The map
type amap_t
private
type(pair_t), allocatable :: pairs(:)
integer, private :: extent = 10
integer, private :: high_water = 0
contains
procedure, public :: get => get_amap_t
procedure, public :: get_value => get_value_amap_t
procedure, public :: set => set_amap_t
procedure, public :: find => find_amap_t
procedure, public :: print => print_amap_t
procedure, public :: clear => clear_amap_t
procedure, private :: is_key_kt
procedure, private :: is_key_kvt
generic, public :: contains => is_key_kt, is_key_kvt
end type amap_t
contains
subroutine clear_amap_t(this)
class(amap_t), intent(inout) :: this
if (allocated(this%pairs)) then
deallocate(this%pairs)
end if
this%high_water = 0
end subroutine clear_amap_t
subroutine set_to_key_t(this, k)
class(key_t), intent(inout) :: this
character(len=*), intent(in) :: k
this%k = adjustl(k)
end subroutine set_to_key_t
subroutine set_to_value_t(this, v)
class(value_t), intent(inout) :: this
real(8), intent(in) :: v
this%v = v
end subroutine set_to_value_t
subroutine print_amap_t(this)
class(amap_t), intent(in) :: this
integer :: i
write(6,'(a,i0,a)') 'Map has ',this%high_water,' elements'
do i=1,this%high_water
write(6,'(4x,dt,a,dt)') this%pairs(i)%k,' -> ',this%pairs(i)%v
end do
end subroutine print_amap_t
subroutine set_amap_t(this,kv,vv)
class(amap_t), intent(inout) :: this
character(len=*), intent(in) :: kv
real(8), intent(in) :: vv
type(pair_t), allocatable :: tmp_pairs(:)
type(key_t) :: k
type(value_t) :: v
integer :: idx
k = kv
v = vv
if (.not. allocated(this%pairs)) then
allocate(this%pairs(this%extent))
end if
idx = this%find(k)
if (idx > 0) then
this%pairs(idx) = pair_t(k,v)
return
end if
if (this%high_water == size(this%pairs)) then
allocate(tmp_pairs(size(this%pairs)+this%extent))
tmp_pairs(1:this%high_water) = this%pairs
call move_alloc(tmp_pairs, this%pairs)
end if
this%high_water = this%high_water + 1
this%pairs(this%high_water) = pair_t(k,v)
end subroutine set_amap_t
function find_amap_t(this, k) result(r)
class(amap_t), intent(in) :: this
type(key_t), intent(in) :: k
integer :: r
do r = 1, this%high_water
if (this%pairs(r)%k == k) then
return
end if
end do
r = 0
end function find_amap_t
function get_amap_t(this, kv) result(r)
class(amap_t), intent(in) :: this
character(len=*), intent(in) :: kv
type(value_t) :: r
type(key_t) :: k
integer :: idx
k = kv
idx = this%find(k)
if (idx > 0) then
r = this%pairs(idx)%v
else
r = value_t()
end if
end function get_amap_t
function get_value_amap_t(this, kv) result(r)
class(amap_t), intent(in) :: this
character(len=*), intent(in) :: kv
real(8) :: r
type(value_t) :: s
s = this%get(kv)
r = s%v
end function get_value_amap_t
function is_key_kt(this, k) result(r)
class(amap_t), intent(in) :: this
type(key_t), intent(in) :: k
logical :: r
r = this%find(k) > 0
end function is_key_kt
function is_key_kvt(this, kv) result(r)
class(amap_t), intent(in) :: this
character(len=*), intent(in) :: kv
logical :: r
r = this%find(key_t(kv)) > 0
end function is_key_kvt
function equals_key_t(this, k) result(r)
class(key_t), intent(in) :: this
type(key_t), intent(in) :: k
logical :: r
r = trim(adjustl(this%k)) == trim(adjustl(k%k))
end function equals_key_t
subroutine write_key_t(key, unit, iotype, v_list, iostat, iomsg)
class(key_t), intent(in) :: key
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
iostat = 0
iomsg = ""
write(6,'(a)', iostat=iostat, iomsg=iomsg) trim(adjustl(key%k))
end subroutine write_key_t
subroutine write_value_t(value, unit, iotype, v_list, iostat, iomsg)
class(value_t), intent(in) :: value
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
iostat = 0
iomsg = ""
write(6,'(f0.6)', iostat=iostat, iomsg=iomsg) value%v
end subroutine write_value_t
end module amap

920
hp.f90 Normal file
View file

@ -0,0 +1,920 @@
program hp15c
use rpn_stack
use linked_list, print_ll => print, clear_ll => clear, size_ll => size
use amap
implicit none
real(8) :: x
integer :: ios, i
integer :: verbosity = 0
character(100) :: buff
integer :: blen
integer :: argl, argc
type(llist) :: tokens
type(llist_node), pointer :: token
real(8), parameter :: ag = 9.80665d0
real(8), parameter :: g = 6.67430d-11
real(8), parameter :: e = exp(1.0d0)
real(8), parameter :: c = 2.99792458d8
type(amap_t) :: constants
type(amap_t) :: stats
integer :: in_sequence = 0
logical :: seq_is_x
real(8), allocatable :: x_seq(:), y_seq(:)
integer :: n_seq = 0
logical :: veMode = .false.
logical :: lang_en = .true.
logical :: tmp_cmode
logical :: ok
logical :: getNext, numbers, have_expression
integer :: stat
character(len=100) :: msg
character(5) :: lang
type(rpn_t) :: mem(0:9) = rpn_t()
! Create a stack of size 4
type(stack_t(5)) :: stack
call stack%set_legend(['x:','y:','z:','s','t:'])
degrees_mode = .true.
complex_mode = .false.
eps = 1.0d-14
! Constants
call constants%set('g',ag)
call constants%set('G',g)
call constants%set('e',e)
call constants%set('c',c)
call constants%set('pi',pi)
call constants%set('two_pi',2*pi)
call constants%set('pi_over_2',pi/2)
! Try to read the LANG environment variable
call get_environment_variable('LANG',lang,status=stat)
lang_en = stat /= 0
if (.not. lang_en) then
lang_en = merge(.true.,.false.,lang(1:3) == 'en_')
end if
lang = merge('POINT','COMMA',lang_en)
call init(lang)
! Interrogate argument list
argc = command_argument_count()
have_expression = .false.
do i=1,argc
call get_command_argument(i, buff, argl)
if (buff(1:argl) == '-d') then
verbosity = 1
cycle
else if (buff(1:argl) == '-c') then
complex_mode = .true.
cycle
else if (buff(1:argl) == '-v') then
veMode = .true.
cycle
else if (buff(1:argl) == '-h') then
call help
stop
end if
have_expression = .true.
! Break the string up into a linked-list of tokens
call tokenize(buff(1:argl))
if (verbosity > 0) call print_ll(tokens)
! Interpret each token as a command and appky it
ok = tokens%iterate(apply_command)
! Do not print the stack at the end of a sequence -it's confusing
if (in_sequence /= 2) then
call stack%print(veMode)
end if
! Tidy
call clear_ll(tokens)
if (.not. ok) stop
end do
if (.not. have_expression) then
call stack%print(veMode)
end if
! Loop until quit
all :do
x = 0.0d0
buff = ''
write(6,'(a)',advance='no') ':: '
read(5,fmt='(a)',iostat=ios,iomsg=msg) buff
if (ios /= 0) then
write(6,'(/a)') 'Command:['//buff(1:blen)//']'//'; '//msg
cycle all
end if
buff = trim(adjustl(buff))
blen = len_trim(buff)
if (blen == 0) cycle all
! Tokenize input string
call tokenize(buff(1:blen))
ok = tokens%iterate(apply_command)
if (.not. ok) exit all
if (in_sequence == 1) then
write(6,'(i0)') n_seq
else if (in_sequence == 2) then
in_sequence = 0
else
call stack%print(veMode)
end if
end do all
call clear_ll(tokens)
stop
contains
subroutine tokenize(com)
character(*), intent(in) :: com
integer :: start, end
character(len=:), allocatable :: command
call clear_ll(tokens)
if (len_trim(com) == 0) then
return
end if
start = 1
! Ensure there are no leading and trailing spaces
command = trim(adjustl(com))
end = index(command,' ')
end = merge(len(command),end-1,end==0)
do
call append(tokens,command(start:end))
if (end == len(command)) exit
start = end + nsp(command(end+1:))
end = index(command(start:),' ') - 1
end = merge(len(command),end+start-1,end == -1)
end do
end subroutine tokenize
subroutine help
write(6,'(/a)') 'Command Calculator'
write(6,'(a/)') '=================='
write(6,'(a)') 'Introduction'
write(6,'(a/)') '------------'
write(6,'(a)') 'This is a command-line calculator. It supports both real and complex modes, as well'
write(6,'(a)') 'as degrees/radians selection and precision control. It can be run interactively or as an'
write(6,'(a/)') 'expression parser. This help is deliberately terse to encourage exploration.'
write(6,'(a/)') '-------------------------------------------------------------------------------'
write(6,'(a)') 'Operators: + - * / ^ ^/x ^x ^2 ^/2 ^3 ^/3 ^*2 ^*10 || ! %'
write(6,'(a)') 'Constants: pi e g G c two_pi pi_over_2'
write(6,'(a)') 'Functions: sin cos tan asin acos atan sinh cosh tanh log2 log lg len sq sqrt cb cbrt'
write(6,'(a)') ' alog2 alog alog10 gamma ncr npr rem int nint'
write(6,'(a)') ' Controls: fix[0-9] clx cl cla '
write(6,'(a)') ' Modes: real complex verbose terse degrees radians'
write(6,'(a)') ' Memories: n=0...9 st<n> sw<n> rc<n> cl<n> m<n>+ m<n>- m<n>* m<n>/ msh'
write(6,'(a)') ' Complex: ri _ || to_pol to_cart'
write(6,'(a)') ' Actions: 1/ -- R r ? > < split drop'
write(6,'(a)') ' Stats: { x1 x2 ... } { x1,y1 x2,y2 ... }'
write(6,'(a)') ' n ux sx mx lqx uqx uy sy my lqy uqy a b cov corr'
write(6,'(a/)') ' Quits: q'
write(6,'(a/)') '-------------------------------------------------------------------------------'
write(6,'(a)') 'Examples'
write(6,'(a)') '--------'
write(6,'(4x,a)') 'hp "fix2 18 2 - 8 2 / * =" -> 64.00'
write(6,'(4x,a)') 'hp "2 -- complex sqrt =" -> (0.00000,-1.414214)'
write(6,'(4x,a/)') 'hp -c "radians (1,pi_over_2)p ^ * degrees =" -> (1.000000,180.000000) p'
end subroutine help
subroutine apply_command(command, ok)
use, intrinsic :: ieee_arithmetic
implicit none
character(*), intent(in) :: command
logical, intent(out) :: ok
real(8) :: r, im, ang
complex(8) :: u, z
real(8), allocatable :: tmp_seq(:)
type(rpn_t) :: us, zs
logical :: is_cart
integer :: m, idx
character(len=1) :: comma
character(5), parameter :: lang(2) = ['POINT','COMMA']
ok = .true.
if (len_trim(command) == 0) then
return
end if
if (verbosity > 0) then
write(*,'(a)') 'Applying: '//command
end if
if (in_sequence == 1) then
if (command == '}') then
in_sequence = 2
complex_mode = tmp_cmode
call calculate_stats
else
! All elements must be the same so either all x or all x,y
idx = index(command,',')
if (n_seq == 0) then
seq_is_x = (idx == 0)
end if
if (seq_is_x .neqv. (idx == 0)) then
goto 901
end if
if (seq_is_x) then
read(command,*,err=901) r
im = 0
else
read(command(1:idx-1),*,err=901) r
read(command(idx+1:len(command)),*,err=901) im
end if
! Initial allocation
if (n_seq == 0 .and. .not. allocated(x_seq)) then
allocate(x_seq(10))
if (.not. seq_is_x) then
allocate(y_seq(10))
end if
end if
if (n_seq < size(x_seq)) then
n_seq = n_seq + 1
else
! Expand array
allocate(tmp_seq(n_seq + 10))
tmp_seq(1:n_seq) = x_seq
call move_alloc(tmp_seq, x_seq)
if (.not. seq_is_x) then
allocate(tmp_seq(n_seq + 10))
tmp_seq(1:n_seq) = y_seq
call move_alloc(tmp_seq, y_seq)
end if
end if
x_seq(n_seq) = r
if (.not. seq_is_x) then
y_seq(n_seq) = im
end if
if (verbosity > 0) then
print *,x_seq(1:n_seq)
end if
end if
return
end if
select case(command)
case('q','quit')
ok = .false.
return
case('=')
ok = .false.
return
case('{')
! Start sequence
in_sequence = 1
n_seq = 0
tmp_cmode = complex_mode
complex_mode = .false.
call stats%clear()
case('--')
call invoke_unary(chs_fr)
case('^')
call stack%push(stack%peek(1))
case('+')
call invoke_binary(add_fr)
case('-')
call invoke_binary(subtract_fr)
case('*')
call invoke_binary(multiply_fr)
case('/')
call invoke_binary(divide_fr)
case('^x')
call invoke_binary(power_fr)
case('^/x')
! Only raising to a real power is supported
zs = stack%peek(1)
if (zs%is_real()) then
call invoke_binary(root_fr)
else
goto 901
end if
case('>')
call invoke_unary(next_root_fr)
case('<')
call invoke_unary(previous_root_fr)
case('%')
call invoke_binary(percent_fr)
case('xy','XY')
call stack%swap
case('R')
call stack%rotate_down
case('r')
call stack%rotate_up
case('CLA','cla')
call stack%clear
mem = rpn_t()
call stats%clear
case('CL','cl')
call stack%clear
case('CLX','clx')
call stack%set(rpn_t())
case('_')
if (complex_mode) then
call invoke_unary(conj_fr)
endif
case('len','||')
if (complex_mode) then
call invoke_unary(len_fr)
! Length is always reported as (x,0) and marked is_cartesian
zs = stack%peek(1)
call zs%set_value(is_cartesian=.true.)
call stack%set(zs,1)
else
zs = stack%peek(1)
z = zs%get_value()
us = stack%peek(2)
u = us%get_value()
call zs%set_value(cmplx(hypot(z%re,u%re),0,8))
call stack%set(zs)
end if
case('split')
if (.not. complex_mode) then
zs = stack%pop()
x = zs%get_value()
if (x > 0) then
r = floor(x)
else
r = ceiling(x)
end if
im = x - r
call stack%push(im)
call stack%push(r)
end if
case('int')
if (.not. complex_mode) then
zs = stack%peek(1)
x = zs%get_value()
if (x > 0) then
r = floor(x)
else
r = ceiling(x)
end if
call zs%set_value(cmplx(r,0,8))
call stack%set(zs,1)
end if
case('nint')
if (.not. complex_mode) then
zs = stack%peek(1)
x = zs%get_value()
r = nint(x)
if (mod(r,2.0d0) == 1) then
r = r - 1
end if
call zs%set_value(cmplx(r,0,8))
call stack%set(zs,1)
end if
case('rem')
if (.not. complex_mode) then
zs = stack%peek(1)
x = zs%get_value()
if (x > 0) then
r = floor(x)
else
r = ceiling(x)
end if
im = x - r
call zs%set_value(cmplx(im,0,8))
call stack%set(zs,1)
end if
case('drop')
zs = stack%pop()
case('ri')
! Swap real and imaginary parts
if (complex_mode) then
call invoke_unary(swap_real_imaginary_fr)
end if
case('to_pol')
! Convert x + iy to r + i theta
if (complex_mode) then
zs = stack%peek(1)
call stack%set(to_polar(zs))
end if
case('to_cart')
! Convert (r,theta) to (x,y)
if (complex_mode) then
zs = stack%peek(1)
call stack%set(to_cartesian(zs))
end if
case('1/')
call invoke_unary(reciprocal_fr)
case('^2','sq')
call invoke_unary(power_2_fr)
case('^/2','sqrt')
call invoke_unary(sqrt_fr)
case('^3','cb')
call invoke_unary(power_3_fr)
case('^/3','cbrt')
call invoke_unary(cbrt_fr)
case('^*2','alog2')
call invoke_unary(exp_2_fr)
case('^*10','alog10')
call invoke_unary(exp_10_fr)
case('exp','alog')
call invoke_unary(exp_e_fr)
case('ln')
call invoke_unary(ln_fr)
case('log2')
call invoke_unary(log2_fr)
case('lg')
call invoke_unary(lg_fr)
case('sinh')
call invoke_unary(hsine_fr)
case('cosh')
call invoke_unary(hcosine_fr)
case('tanh')
call invoke_unary(htangent_fr)
case('sin')
call invoke_unary(sine_fr)
case('cos')
call invoke_unary(cosine_fr)
case('tan')
call invoke_unary(tangent_fr)
case('asin')
call invoke_unary(asine_fr)
case('asinh')
call invoke_unary(ahsine_fr)
case('acos')
call invoke_unary(acosine_fr)
case('acosh')
call invoke_unary(ahcosine_fr)
case('atan')
call invoke_unary(atangent_fr)
case('atanh')
call invoke_unary(ahtangent_fr)
case('atan2')
call invoke_binary(atangent2_fr)
case('gamma')
call invoke_unary(gamma_fr)
case('!')
zs = stack%peek(1)
if (zs%is_positive_real()) then
call invoke_unary(fact_fr)
else
goto 901
end if
case('ncr')
zs = stack%peek(1)
us = stack%peek(2)
if (zs%is_positive_real() .and. us%is_positive_real()) then
call invoke_binary(ncr_fr)
else
goto 901
end if
case('npr')
zs = stack%peek(1)
us = stack%peek(2)
if (zs%is_positive_real() .and. us%is_positive_real()) then
call invoke_binary(npr_fr)
else
goto 901
end if
case('m0+','m1+','m2+','m3+','m4+','m5+','m6+','m7+','m8+','m9+')
read(command(2:2),'(i1)',err=901) m
mem(m) = mem(m) + stack%peek(1)
case('m0-','m1-','m2-','m3-','m4-','m5-','m6-','m7-','m8-','m9-')
read(command(2:2),'(i1)',err=901) m
mem(m) = mem(m) - stack%peek(1)
case('m0*','m1*','m2*','m3*','m4*','m5*','m6*','m7*','m8*','m9*')
read(command(2:2),'(i1)',err=901) m
mem(m) = mem(m) * stack%peek(1)
case('m0/','m1/','m2/','m3/','m4/','m5/','m6/','m7/','m8/','m9/')
read(command(2:2),'(i1)',err=901) m
mem(m) = mem(m) / stack%peek(1)
case('st0','st1','st2','st3','st4','st5','st6','st7','st8','st9')
read(command(3:3),'(i1)',err=901) m
mem(m) = stack%peek(1)
case('sw0','sw1','sw2','sw3','sw4','sw5','sw6','sw7','sw8','sw9')
read(command(3:3),'(i1)',err=901) m
zs = stack%peek(1)
call stack%set(mem(m))
mem(m) = zs
case('rc0','rc1','rc2','rc3','rc4','rc5','rc6','rc7','rc8','rc9')
read(command(3:3),'(i1)',err=901) m
call stack%push(mem(m))
case('cl0','cl1','cl2','cl3','cl4','cl5','cl6','cl7','cl8','cl9')
read(command(3:3),'(i1)',err=901) m
mem(m) = rpn_t()
case('msh')
write(6,'(i3,a,dt)') (i,': ',mem(i),i=0,size(mem)-1)
case('fix0','fix1','fix2','fix3','fix4','fix5','fix6','fix7','fix8','fix9')
read(command(4:4),'(i1)') m
call set_places(m)
case('DEG','deg','DEGREES','degrees')
call toggle_degrees_mode(.true.)
case('RAD','rad','RADIANS','radians')
call toggle_degrees_mode(.false.)
case('mC','COMPLEX','complex')
complex_mode = .true.
case('mR','REAL','real')
complex_mode = .false.
case('mV','VERBOSE','verbose')
veMode = .true.
case('mT','TERSE','terse')
veMode = .false.
case('?')
write(6,advance='no',fmt='(a)') 'Status: '
write(6,advance='no',fmt='(2a)') merge('degrees','radians',degrees_mode),' ; '
write(6,advance='no',fmt='(a,i0)') 'dp = ',get_places()
if (complex_mode) then
write(6,advance='no',fmt='(a)') ' ; mode = complex'
else
write(6,advance='no',fmt='(a)') ' ; mode = real'
end if
write(6,advance='no',fmt='(a,i0)') ' ; stack size = ',stack%get_size()
write(6,'(a/)') ''
case('help','h')
call help
case default
! Process constants first
block
integer :: lc, is_integer,split_idx,end_idx
character(len=:), allocatable :: re_comp, im_comp
lc = len_trim(command)
is_integer = (index(command,'.') == 0)
if (complex_mode) then
if (command(1:1) == '(') then
split_idx = index(command,',')
end_idx = index(command,')')
re_comp = command(2:split_idx-1)
im_comp = command(split_idx+1:end_idx-1)
if (constants%contains(re_comp)) then
z%re = constants%get_value(re_comp)
else
read(re_comp,*,err=901,end=901) z%re
end if
if (constants%contains(im_comp)) then
z%im = constants%get_value(im_comp)
else
read(im_comp,*,err=901,end=901) z%im
end if
if (command(lc:lc) == 'p') then
call stack%push(z,.false.)
else
call stack%push(z)
end if
else
if (constants%contains(command)) then
x = constants%get_value(command)
else
read(command,*,err=901,end=901) x
end if
call stack%push(cmplx(x,0.0d0,8))
end if
else
if (constants%contains(command)) then
x = constants%get_value(command)
else if (stats%contains(command)) then
x = stats%get_value(command)
else
read(command,*,err=901,end=901) x
end if
call stack%push(cmplx(x,0.0d0,8))
end if
end block
end select
return
901 continue
write(6,'(a)') command//' ???'
return
end subroutine apply_command
subroutine calculate_stats
real(8) :: a, b, c, sxy
real(8) :: s(5,2)
call summary_stats(x_seq(1:n_seq),s(1,1),s(2,1),s(3,1),s(4,1),s(5,1))
call stats%set('n',real(n_seq,8))
call stats%set('ux',s(1,1))
call stats%set('mx',s(2,1))
call stats%set('sx',s(3,1))
call stats%set('lqx',s(4,1))
call stats%set('uqx',s(5,1))
if (seq_is_x) then
write(6,10) ' count n -> ',n_seq
call print_value(' mean ux -> ',s(1,1))
call print_value(' stddev sx -> ',s(3,1))
call print_value(' median mx -> ',s(2,1))
call print_value('lower_q lqx -> ',s(4,1))
call print_value('upper_q uqx -> ',s(5,1))
else
call summary_stats(y_seq(1:n_seq),s(1,2),s(2,2),s(3,2),s(4,2),s(5,2))
write(6,10) ' count n -> ',n_seq
call print_value(' means ux , uy -> ',s(1,1),s(1,2))
call print_value(' stddevs sx , xy -> ',s(3,1),s(3,2))
call print_value(' medians mx , my -> ',s(2,1),s(2,2))
call print_value('lower_qs lqx , lqy -> ',s(4,1),s(4,2))
call print_value('upper_qs uqx , uqy -> ',s(5,1),s(5,2))
call stats%set('uy',s(1,2))
call stats%set('my',s(2,2))
call stats%set('sy',s(3,2))
call stats%set('lqy',s(4,2))
call stats%set('uqy',s(5,2))
call calculate_regression(s(1,1),s(1,2),a,b,c,sxy)
call stats%set('a',a)
call stats%set('b',b)
call stats%set('corr',c)
call stats%set('cov',sxy)
write(6,'(/a)') 'Regression: y = ax + b'
call print_value(' gradient a ->',a)
call print_value(' intercept b -> ',b)
call print_value(' covariance cov -> ',sxy)
call print_value('correlation corr -> ',c)
end if
10 format(a,i0)
end subroutine calculate_stats
subroutine calculate_regression(mean_x, mean_y, a, b, c, sxy)
real(8), intent(in) :: mean_x, mean_y
real(8), intent(out) :: a, b, c, sxy
integer :: i
real(8) :: sxx, syy
sxy = sum(x_seq(1:n_seq)*y_seq(1:n_seq))/n_seq - mean_x*mean_y
sxx = sum(x_seq(1:n_seq)*x_seq(1:n_seq))/n_seq - mean_x**2
syy = sum(y_seq(1:n_seq)*y_seq(1:n_seq))/n_seq - mean_y**2
a = sxy/sxx
b = mean_y - a*mean_x
c = sxy/sqrt(sxx*syy)
end subroutine calculate_regression
subroutine print_value(name, x, y)
character(len=*), intent(in) :: name
real(8), intent(in) :: x
real(8), intent(in), optional :: y
character(len=:), allocatable :: fmt_x, fmt_y
call to_string(x, fmt_x)
if (present(y)) then
call to_string(y, fmt_y)
fmt_x = fmt_x//' , '//fmt_y
end if
write(6,'(a)') name//fmt_x
end subroutine print_value
subroutine summary_stats(a, mean, median, stddev, lower_q, upper_q)
real(8), intent(in) :: a(:)
real(8), intent(out) :: mean, median, stddev, lower_q, upper_q
real(8) :: b(size(a))
real(8) :: s, s2
integer :: m, n
n = size(a)
b = a
s = sum(b)
s2 = sum(b**2)
mean = s/n
stddev = sqrt(s2/n - (s/n)**2)
call sort(b)
median = calc_median(b, m)
if (n < 3) then
lower_q = median
upper_q = median
else
lower_q = calc_median(b(1:m))
if (mod(n,2) == 0) then
upper_q = calc_median(b(m+1:n))
else
upper_q = calc_median(b(m:n))
end if
end if
end subroutine summary_stats
function calc_median(a, mid) result(r)
real(8), intent(in) :: a(:)
integer, intent(out), optional :: mid
real(8) :: r
integer :: m, n
n = size(a)
m = n/2
if (mod(n,2) == 0) then
r = (a(m) + a(m+1))/2.0d0
else
m = m + 1
r = a(m)
end if
if (present(mid)) then
mid = m
end if
end function calc_median
! 'a' won't be very big so a simple n**2 algorithm will do
subroutine sort(a)
real(8), intent(inout) :: a(:)
real(8) :: b(size(a))
integer :: i, j(size(a))
logical :: mask(size(a))
mask = .true.
b = a
do i=1,size(a)
j = minloc(b, mask)
associate (j1 => j(1))
a(i) = b(j1)
mask(j1) = .false.
end associate
end do
end subroutine
subroutine toggle_degrees_mode(new_mode)
logical, intent(in) :: new_mode
integer :: i
type(rpn_t) :: rz
! Only do something if the modes are different
if (new_mode .eqv. degrees_mode) return
degrees_mode = .not. degrees_mode
! Convert all polar complex numbers
! 1) In the stack
do i=1,stack%ssize
rz = stack%peek(i)
call update_angle_unit(rz)
call stack%set(rz,i)
end do
! 2) in memory
do i=lbound(mem,1),ubound(mem,1)
call update_angle_unit(mem(i))
end do
! 3) in multiple roots
do i=1,nroots
call update_angle_unit(roots(i))
end do
end subroutine toggle_degrees_mode
subroutine update_angle_unit(rz)
type(rpn_t), intent(inout) :: rz
complex(8) :: zs
logical :: is_cart
zs = rz%get_value(is_cart)
if (is_cart) return
zs%im = zs%im*merge(to_deg, to_rad, degrees_mode)
call rz%set_value(zs,is_cart)
end subroutine update_angle_unit
subroutine invoke_binary(action)
procedure(binary_f), pointer, intent(in) :: action
type(rpn_t) :: us, zs
logical :: is_cart
zs = stack%pop()
if (complex_mode) then
is_cart = zs%is_cartesian()
if (.not. is_cart) then
zs = to_cartesian(zs)
end if
us = stack%peek(1)
if (.not. us%is_cartesian()) then
us = to_polar(us)
end if
us = action(us,zs)
if (.not. is_cart) then
us = to_polar(us)
end if
call stack%set(us)
else
us = stack%peek(1)
call stack%set(action(us,zs))
end if
end subroutine invoke_binary
subroutine invoke_unary(action)
procedure(unary_f), pointer, intent(in) :: action
logical :: is_cart
type(rpn_t) :: z
if (complex_mode) then
z = stack%peek(1)
is_cart = z%is_cartesian()
if (.not. is_cart) then
z = to_cartesian(z)
end if
z = action(z)
if (.not. is_cart) then
z = to_polar(z)
end if
call stack%set(z)
else
call stack%set(action(stack%peek(1)))
end if
end subroutine invoke_unary
integer function nsp(command)
implicit none
character(*), intent(in) :: command
integer :: i
do i=1,len(command)
if (command(i:i) /= ' ') then
nsp = i
return
end if
end do
nsp = 0
end function nsp
end program hp15c

97
linked_list.f90 Normal file
View file

@ -0,0 +1,97 @@
module linked_list
public
type llist
private
type(llist_node), pointer :: begin => null()
type(llist_node), pointer :: end => null()
contains
procedure :: iterate => iterate_ll
end type llist
type llist_node
private
character(len=:), allocatable :: data
type(llist_node), pointer :: next => null()
end type llist_node
! Interface for functions being applied to each list element in turn
! when iterating
abstract interface
subroutine command_fun(command, ok)
character(*), intent(in) :: command
logical, intent(out) :: ok ! Exit the loop if not true
end subroutine command_fun
end interface
contains
function iterate_ll(this, f) result(r)
class(llist), intent(inout), target :: this
procedure(command_fun) :: f
logical :: r
type(llist_node), pointer :: token
token => this%begin
do
if (.not. associated(token)) exit
call f(trim(token%data), r)
if (.not. r) then
exit
end if
token => token%next
end do
end function iterate_ll
subroutine append(lst, data)
type(llist), intent(inout) :: lst
character(*), intent(in) :: data
if (.not. associated(lst%begin)) then
allocate(lst%begin)
lst%begin%data = data
lst%end => lst%begin
else
allocate(lst%end%next)
lst%end%next%data = data
lst%end => lst%end%next
end if
end subroutine append
subroutine print(lst)
type(llist), intent(in) :: lst
type(llist_node), pointer :: next
write(*,'(a)') 'Tokens:'
next => lst%begin
do
if (.not. associated(next)) exit
write(*,'(4x,a)') next%data
next => next%next
end do
end subroutine print
integer function size(lst)
type(llist), intent(inout) :: lst
type(llist_node), pointer :: this
size = 0
this => lst%begin
do
if (.not. associated(this)) exit
size = size + 1
this => this%next
end do
end function size
subroutine clear(lst)
type(llist), intent(inout) :: lst
type(llist_node), pointer :: this, next
this => lst%begin
do
if (.not. associated(this)) exit
next => this%next
deallocate(this)
this => next
end do
nullify(lst%end)
nullify(lst%begin)
end subroutine clear
end module linked_list

467
rpn_stack.f90 Normal file
View file

@ -0,0 +1,467 @@
module rpn_stack
implicit none
! Type for the data that's going on to the stack
type rpn_t
private
complex(8), private :: zdata = 0
logical, private :: is_cart = .true.
contains
procedure, private :: write_rpns
generic, public :: write(formatted) => write_rpns
procedure :: get_value => get_value_rpns
procedure :: set_value => set_value_rpns
procedure :: is_integer => is_integer_rpns
procedure :: is_real => is_real_rpns
procedure :: is_positive_real => is_positive_real_rpns
procedure :: is_cartesian => is_cartesian_rpns
procedure :: set_angle_unit => set_angle_unit_rpns
procedure, private :: add_rpns
generic, public :: operator(+) => add_rpns
procedure, private :: subtract_rpns
generic, public :: operator(-) => subtract_rpns
procedure, private :: multiply_rpns
generic, public :: operator(*) => multiply_rpns
procedure, private :: divide_rpns
generic, public :: operator(/) => divide_rpns
procedure, private :: power_rpns
generic, public :: operator(**) => power_rpns
procedure, private :: set_to_rpns
generic, public :: assignment(=) => set_to_rpns
end type rpn_t
! Make the stack a parameterized derived type in case we want a different size
type stack_t(ssize)
integer, len :: ssize
private
type(rpn_t) :: sdata(ssize)
character(2) :: legend(ssize)
integer :: high_water = 0
contains
procedure, private :: push_stackt
procedure, private :: push_all_stackt
procedure, private :: push_r_stackt
generic, public :: push => push_stackt, push_all_stackt, push_r_stackt
procedure :: peek => peek_stackt
procedure :: pop => pop_stackt
procedure :: set => set_stackt
procedure :: clear => clear_stackt
procedure :: swap => swap_stackt
procedure :: rotate_up => rotate_up_stackt
procedure :: rotate_down => rotate_down_stackt
procedure :: print => print_stackt
procedure :: get_size => get_size_stackt
procedure :: set_legend => set_legend_stackt
end type stack_t
interface
module subroutine set_legend_stackt(stk, legend)
class(stack_t(*)), intent(inout) :: stk
character(len=2), intent(in) :: legend(:)
end subroutine set_legend_stackt
module function get_size_stackt(stk) result(r)
class(stack_t(*)), intent(in) :: stk
integer :: r
end function get_size_stackt
module subroutine print_stackt(stk, ve_mode)
class(stack_t(*)), intent(in) :: stk
logical, intent(in) :: ve_mode
end subroutine print_stackt
module subroutine push_stackt(stk, z)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: z
end subroutine push_stackt
module subroutine push_r_stackt(stk, x)
class(stack_t(*)), intent(inout) :: stk
real(8) :: x
end subroutine push_r_stackt
module subroutine push_all_stackt(stk, z, is_cart)
class(stack_t(*)), intent(inout) :: stk
complex(8), intent(in) :: z
logical, intent(in), optional :: is_cart
end subroutine push_all_stackt
module subroutine set_stackt(stk, z, idx)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t), intent(in) :: z
integer, optional, intent(in) :: idx
end subroutine set_stackt
module function peek_stackt(stk, idx) result(r)
class(stack_t(*)), intent(inout) :: stk
integer, intent(in) :: idx
type(rpn_t) :: r
end function peek_stackt
module function pop_stackt(stk) result(r)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: r
end function pop_stackt
module subroutine clear_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
end subroutine clear_stackt
module subroutine swap_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
end subroutine swap_stackt
module subroutine rotate_up_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
end subroutine rotate_up_stackt
module subroutine rotate_down_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
end subroutine rotate_down_stackt
end interface
interface
module subroutine write_rpns(se, unit, iotype, v_list, iostat, iomsg)
class(rpn_t), intent(in) :: se
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
end subroutine write_rpns
module function is_integer_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
end function is_integer_rpns
module function is_cartesian_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
end function is_cartesian_rpns
module function is_real_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
end function is_real_rpns
module function is_positive_real_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
end function is_positive_real_rpns
module subroutine set_angle_unit_rpns(this, degrees)
class(rpn_t), intent(inout) :: this
logical, intent(in) :: degrees
end subroutine set_angle_unit_rpns
module function get_value_rpns(this, is_cartesian) result(r)
class(rpn_t), intent(in) :: this
logical, optional, intent(out) :: is_cartesian
complex(8) :: r
end function get_value_rpns
module subroutine set_value_rpns(this, z, is_cartesian)
class(rpn_t), intent(inout) :: this
complex(8), optional, intent(in) :: z
logical, optional, intent(in) :: is_cartesian
end subroutine set_value_rpns
module subroutine set_to_rpns(this, z)
class(rpn_t), intent(inout) :: this
type(rpn_t), intent(in) :: z
end subroutine set_to_rpns
module function add_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function add_rpns
module function subtract_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function subtract_rpns
module function multiply_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function multiply_rpns
module function divide_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function divide_rpns
module function power_rpns(this, x) result(r)
class(rpn_t), intent(in) :: this
real(8), intent(in) :: x
type(rpn_t) :: r
end function power_rpns
end interface
real(8), parameter :: pi = 4*atan(1.0d0)
real(8), parameter :: to_rad = pi/180
real(8), parameter :: to_deg = 180/pi
character(5), private :: decimal = 'POINT'
integer :: nroots = 0
type(rpn_t), allocatable :: roots(:)
integer, private :: current_root = 0
character(9), private :: f_large
character(9), private :: f_small
integer :: dec_places = 6
logical :: degrees_mode = .true.
logical :: complex_mode = .false.
real(8) :: eps = 1.0d-14
! Functions interface
interface
module function add_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function add_fr
module function subtract_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function subtract_fr
module function multiply_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function multiply_fr
module function divide_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function divide_fr
module function power_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function power_fr
module function percent_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
type(rpn_t), intent(in) :: b
end function percent_fr
module function power_2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function power_2_fr
module function power_3_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function power_3_fr
module function sqrt_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function sqrt_fr
module function cbrt_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function cbrt_fr
module function reciprocal_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function reciprocal_fr
module function conj_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function conj_fr
module function len_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function len_fr
module function swap_real_imaginary_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function swap_real_imaginary_fr
module function chs_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function chs_fr
module function sine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function sine_fr
module function cosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function cosine_fr
module function tangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function tangent_fr
module function hsine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function hsine_fr
module function hcosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function hcosine_fr
module function htangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function htangent_fr
module function asine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function asine_fr
module function acosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function acosine_fr
module function atangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function atangent_fr
module function ahsine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function ahsine_fr
module function ahcosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function ahcosine_fr
module function ahtangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function ahtangent_fr
module function exp_2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function exp_2_fr
module function exp_e_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function exp_e_fr
module function exp_10_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function exp_10_fr
module function ln_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function ln_fr
module function log2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function log2_fr
module function lg_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function lg_fr
module function gamma_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function gamma_fr
module function fact_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function fact_fr
module function ncr_fr(a, b) result(r)
type(rpn_t), intent(in) :: a, b
type(rpn_t) :: r
end function ncr_fr
module function npr_fr(a, b) result(r)
type(rpn_t), intent(in) :: a, b
type(rpn_t) :: r
end function npr_fr
module function root_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function root_fr
module function next_root_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function next_root_fr
module function previous_root_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function previous_root_fr
module function atangent2_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
end function atangent2_fr
module function round(x) result(r)
real(8), intent(in) :: x
real(8) ::r
end function round
module subroutine init(lang)
character(5), intent(in), optional :: lang
end subroutine init
module subroutine set_places(n)
integer, intent(in) :: n
end subroutine set_places
module function get_places() result(r)
integer :: r
end function get_places
module subroutine to_string(x, str)
real(8), intent(in) :: x
character(len=:), allocatable, intent(out) :: str
end subroutine to_string
end interface
public
interface to_polar
module function to_polar_rpns(stk_z) result(r)
type(rpn_t), intent(in) :: stk_z
type(rpn_t) :: r
end function to_polar_rpns
end interface
interface to_cartesian
module function to_cartesian_rpns(stk_z) result(r)
type(rpn_t), intent(in) :: stk_z
type(rpn_t) :: r
end function to_cartesian_rpns
end interface
abstract interface
function binary_f(a,b) result(r)
import
type(rpn_t), intent(in) :: a, b
type(rpn_t) :: r
end function binary_f
function unary_f(a) result(r)
import
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
end function unary_f
end interface
end module rpn_stack

759
rpn_stack_sm.f90 Normal file
View file

@ -0,0 +1,759 @@
! Implementation code for stack
submodule (rpn_stack) stack_sm
implicit none
contains
module subroutine set_legend_stackt(stk, legend)
class(stack_t(*)), intent(inout) :: stk
character(len=2), intent(in) :: legend(:)
stk%legend = legend
end subroutine set_legend_stackt
module function get_size_stackt(stk) result(r)
class(stack_t(*)), intent(in) :: stk
integer :: r
r = stk%high_water
end function get_size_stackt
module subroutine print_stackt(stk, ve_mode)
class(stack_t(*)), intent(in) :: stk
logical, intent(in) :: ve_mode
integer :: i, j
if (ve_mode) then
do i=stk%high_water,1,-1
write(6,fmt='(a)',advance='no') stk%legend(i)//' '
write(6,'(dt)') stk%sdata(i)
end do
else
write(6,fmt='(dt)') stk%sdata(1)
end if
end subroutine print_stackt
module subroutine push_stackt(stk, z)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: z
integer :: i
do i=stk%ssize,2,-1
stk%sdata(i) = stk%sdata(i-1)
end do
stk%sdata(1) = z
if (stk%high_water < stk%ssize) &
stk%high_water = stk%high_water + 1
end subroutine push_stackt
module subroutine push_r_stackt(stk, x)
class(stack_t(*)), intent(inout) :: stk
real(8) :: x
type(rpn_t) :: z
z = rpn_t(cmplx(x,0.0d0))
call stk%push_stackt(z)
end subroutine push_r_stackt
module subroutine push_all_stackt(stk, z, is_cart)
class(stack_t(*)), intent(inout) :: stk
complex(8), intent(in) :: z
logical, intent(in), optional :: is_cart
integer :: i
do i=stk%ssize,2,-1
stk%sdata(i) = stk%sdata(i-1)
end do
if (present(is_cart)) then
call stk%set(rpn_t(z,is_cart))
else
call stk%set(rpn_t(z))
end if
if (stk%high_water < stk%ssize) &
stk%high_water = stk%high_water + 1
end subroutine push_all_stackt
module subroutine set_stackt(stk, z, idx)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t), intent(in) :: z
integer, optional, intent(in) :: idx
if (present(idx)) then
stk%sdata(idx) = z
else
stk%sdata(1) = z
end if
end subroutine set_stackt
module function peek_stackt(stk, idx) result(r)
class(stack_t(*)), intent(inout) :: stk
integer, intent(in) :: idx
type(rpn_t) :: r
if (idx >= 1 .and. idx <= stk%ssize) then
r = stk%sdata(idx)
else
write(*,'(a,i0,a)') '***Invalid index (',idx,')'
r = rpn_t()
end if
end function peek_stackt
module function pop_stackt(stk) result(r)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: r
integer :: i
r = stk%sdata(1)
do i=1,stk%ssize-1
stk%sdata(i) = stk%sdata(i+1)
end do
stk%sdata(stk%ssize) = rpn_t()
if (stk%high_water > 0) &
stk%high_water = stk%high_water - 1
end function pop_stackt
module subroutine clear_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
integer :: i
do i=1,stk%ssize
stk%sdata(i) = rpn_t()
end do
stk%high_water = 0
end subroutine clear_stackt
module subroutine swap_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
integer :: i
type(rpn_t) :: z
z = stk%sdata(1)
stk%sdata(1) = stk%sdata(2)
stk%sdata(2) = z
end subroutine swap_stackt
module subroutine rotate_up_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: z
z = stk%pop()
stk%high_water = stk%high_water + 1
call stk%set(z,stk%high_water)
end subroutine rotate_up_stackt
module subroutine rotate_down_stackt(stk)
class(stack_t(*)), intent(inout) :: stk
type(rpn_t) :: z
z = stk%peek(stk%high_water)
stk%high_water = stk%high_water - 1
call stk%push(z)
end subroutine rotate_down_stackt
end submodule stack_sm
! Implementation code for rpn_t
submodule (rpn_stack) rpn_sm
contains
module subroutine write_rpns(se, unit, iotype, v_list, iostat, iomsg)
class(rpn_t), intent(in) :: se
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
complex(8) :: z
character(len=:), allocatable :: str_re, str_im
iostat = 0
iomsg = ""
z = se%zdata
if (complex_mode) then
call to_string(z%re,str_re)
call to_string(z%im,str_im)
if (se%is_cartesian()) then
write(6,'(a)') '('//str_re//','//str_im//')'
else
write(6,'(a)') '('//str_re//','//str_im//') p'
end if
else
call to_string(z%re,str_re)
write(6,'(a)') str_re
end if
end subroutine write_rpns
! Convert real to string inserting a leading 0 if necessary
module subroutine to_string(x, str)
real(8), intent(in) :: x
character(len=:), allocatable, intent(out) :: str
character(len=32) :: s
s = ' '
if (f_small == 'i0') then
write(s,fmt='('//f_small//')') nint(x)
else
if (x == 0 .or. (abs(x) < 1.0d7 .and. abs(x) > 1.0d-7)) then
write(s(2:),fmt='('//f_small//')') x
else
write(s(2:),fmt='('//f_large//')') x
end if
if (s(2:3) == '-.') then
s(1:3) = '-0.'
else if (s(2:2) == '.') then
s(1:2) = '0.'
end if
end if
str = trim(adjustl(s))
end subroutine to_string
module function is_integer_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
real(8) :: x
x = this%zdata%re
r = (abs(nint(x)-x) < eps .and. abs(this%zdata%im) < eps)
end function is_integer_rpns
module function is_cartesian_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
r = this%is_cart
end function is_cartesian_rpns
module function is_real_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
r = this%zdata%im == 0
end function is_real_rpns
module function is_positive_real_rpns(this) result(r)
class(rpn_t), intent(in) :: this
logical :: r
r = this%zdata%im == 0 .and. this%zdata%re > 0
end function is_positive_real_rpns
module subroutine set_angle_unit_rpns(this, degrees)
class(rpn_t), intent(inout) :: this
logical, intent(in) :: degrees
if (.not. this%is_cart) then
this%zdata%im = this%zdata%im*merge(to_deg, to_rad, degrees)
end if
end subroutine set_angle_unit_rpns
module function get_value_rpns(this, is_cartesian) result(r)
class(rpn_t), intent(in) :: this
logical, optional, intent(out) :: is_cartesian
complex(8) :: r
r = this%zdata
if (present(is_cartesian)) then
is_cartesian = this%is_cart
end if
end function get_value_rpns
module subroutine set_value_rpns(this, z, is_cartesian)
class(rpn_t), intent(inout) :: this
complex(8), optional, intent(in) :: z
logical, optional, intent(in) :: is_cartesian
if (present(z)) then
this%zdata = z
end if
if (present(is_cartesian)) then
this%is_cart = is_cartesian
end if
end subroutine set_value_rpns
module subroutine set_to_rpns(this, z)
class(rpn_t), intent(inout) :: this
type(rpn_t), intent(in) :: z
this%zdata = z%zdata
this%is_cart = z%is_cart
end subroutine set_to_rpns
module function add_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
type(rpn_t) :: s
logical :: is_cart
is_cart = a%is_cartesian() ! The output will be set to this
if (a%is_cartesian()) then
r = a
else
r = to_cartesian(a)
end if
if (b%is_cartesian()) then
r%zdata = r%zdata + b%zdata
else
s = to_cartesian(a)
r%zdata = r%zdata + s%zdata
end if
if (.not. is_cart) then
r = to_polar(r)
end if
end function add_rpns
module function subtract_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
type(rpn_t) :: s
logical :: is_cart
is_cart = a%is_cartesian() ! The output will be set to this
if (a%is_cartesian()) then
r = a
else
r = to_cartesian(a)
end if
if (b%is_cartesian()) then
r%zdata = r%zdata - b%zdata
else
s = to_cartesian(a)
r%zdata = r%zdata - s%zdata
end if
if (.not. is_cart) then
r = to_polar(r)
end if
end function subtract_rpns
module function multiply_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
type(rpn_t) :: s
logical :: is_cart
is_cart = a%is_cartesian() ! The output will be set to this
if (a%is_cartesian()) then
r = a
else
r = to_cartesian(a)
end if
if (b%is_cartesian()) then
r%zdata = r%zdata * b%zdata
else
s = to_cartesian(a)
r%zdata = r%zdata * s%zdata
end if
if (.not. is_cart) then
r = to_polar(r)
end if
end function multiply_rpns
module function divide_rpns(a, b) result(r)
class(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
type(rpn_t) :: s
logical :: is_cart
is_cart = a%is_cartesian() ! The output will be set to this
if (a%is_cartesian()) then
r = a
else
r = to_cartesian(a)
end if
if (b%is_cartesian()) then
r%zdata = r%zdata / b%zdata
else
s = to_cartesian(a)
r%zdata = r%zdata / s%zdata
end if
if (.not. is_cart) then
r = to_polar(r)
end if
end function divide_rpns
module function power_rpns(this, x) result(r)
class(rpn_t), intent(in) :: this
real(8), intent(in) :: x
type(rpn_t) :: r
type(rpn_t) :: z
logical :: is_cart
is_cart = this%is_cartesian()
if (.not. is_cart) then
z = to_cartesian(this)
else
z = this
end if
r%zdata = z%zdata**x
if (.not. is_cart) then
r = to_polar(r)
end if
end function power_rpns
module function to_cartesian_rpns(stk_z) result(r)
type(rpn_t), intent(in) :: stk_z
type(rpn_t) :: r
real(8) :: s
real(8) :: theta
if (.not. stk_z%is_cartesian()) then
s = stk_z%zdata%re
theta = stk_z%zdata%im * merge(to_rad,1.0d0,degrees_mode)
r%zdata%re = round(s * cos(theta))
r%zdata%im = round(s * sin(theta))
r%is_cart = .true.
else
r = stk_z
end if
end function to_cartesian_rpns
module function to_polar_rpns(stk_z) result(r)
type(rpn_t), intent(in) :: stk_z
type(rpn_t) :: r
real(8) :: theta
if (stk_z%is_cartesian()) then
call r%set_value(to_polar_internal(stk_z%get_value()),is_cartesian = .false.)
else
r = stk_z
end if
contains
complex(8) function to_polar_internal(z)
complex(8), intent(in) :: z
real(8) :: r
real(8) :: theta
r = sqrt(real(z * conjg(z),8))
theta = atan2(aimag(z), real(z))
to_polar_internal%re = r
to_polar_internal%im = theta * merge(1/to_rad,1.0d0,degrees_mode)
end function to_polar_internal
end function to_polar_rpns
module function add_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a + b
end function add_fr
module function subtract_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a - b
end function subtract_fr
module function multiply_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a * b
end function multiply_fr
module function divide_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a / b
end function divide_fr
module function percent_fr(a,b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a * b / rpn_t(cmplx(100.0d0,0.0d0))
end function percent_fr
module function power_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r = a ** real(b%zdata)
end function power_fr
module function power_2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = a ** 2.0d0
end function power_2_fr
module function power_3_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = a ** 3.0d0
end function power_3_fr
module function sqrt_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
call r%set_value(sqrt(a%zdata))
end function sqrt_fr
module function cbrt_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
call r%set_value(a%zdata ** (1.0d0/3))
end function cbrt_fr
module function reciprocal_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(1.0d0)/a
end function reciprocal_fr
module function conj_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = a
r%zdata%im = -r%zdata%im
end function conj_fr
module function len_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
type(rpn_t) :: s
s = a * conj_fr(a)
r = rpn_t(cmplx(sqrt(real(s%zdata%re)),0.0d0,8))
end function len_fr
module function swap_real_imaginary_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
real(8) :: x
r = a
x = r%zdata%re
r%zdata%re = r%zdata%im
r%zdata%im = x
end function swap_real_imaginary_fr
module function chs_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(cmplx(-a%zdata%re,-a%zdata%im))
end function chs_fr
module function sine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(sin(a%zdata * merge(to_rad,1.0d0,degrees_mode)))
end function sine_fr
module function cosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(cos(a%zdata%re * merge(to_rad,1.0d0,degrees_mode)))
end function cosine_fr
module function tangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(tan(a%zdata * merge(to_rad,1.0d0,degrees_mode)))
end function tangent_fr
module function hsine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(sinh(a%zdata))
end function hsine_fr
module function hcosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(cosh(a%zdata))
end function hcosine_fr
module function htangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(tanh(a%zdata))
end function htangent_fr
module function asine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(asin(a%zdata) * merge(1/to_rad,1.0d0,degrees_mode))
end function asine_fr
module function acosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(acos(a%zdata) * merge(1/to_rad,1.0d0,degrees_mode))
end function acosine_fr
module function atangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(atan(a%zdata) * merge(1/to_rad,1.0d0,degrees_mode))
end function atangent_fr
module function ahsine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(asinh(a%zdata))
end function ahsine_fr
module function ahcosine_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(acosh(a%zdata))
end function ahcosine_fr
module function ahtangent_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(atanh(a%zdata))
end function ahtangent_fr
module function exp_2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(2**a%zdata)
end function exp_2_fr
module function exp_e_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(exp(a%zdata))
end function exp_e_fr
module function exp_10_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(10**a%zdata)
end function exp_10_fr
module function ln_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(log(a%zdata))
end function ln_fr
module function log2_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(log(a%zdata)/log(2.0d0))
end function log2_fr
module function lg_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(log(a%zdata)/log(10.0d0))
end function lg_fr
module function gamma_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
r = rpn_t(gamma(a%zdata%re))
end function gamma_fr
module function fact_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
if (a%zdata%re == 0) then
r = rpn_t(1)
else
r = rpn_t(a%zdata%re*gamma(a%zdata%re))
end if
end function fact_fr
module function ncr_fr(a, b) result(r)
type(rpn_t), intent(in) :: a, b
type(rpn_t) :: r
r = fact_fr(a)/(fact_fr(b)*fact_fr(a-b))
end function ncr_fr
module function npr_fr(a, b) result(r)
type(rpn_t), intent(in) :: a, b
type(rpn_t) :: r
r = fact_fr(a)/fact_fr(b)
end function npr_fr
module function root_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
real(8) :: bc
integer :: i
type(rpn_t) :: base
complex(8) :: z
logical :: a_is_cart
real(8) :: s, delta_theta, theta0, phi
real(8), parameter :: two_pi = 8*atan(1.0d0)
bc = real(b%get_value())
r = power_fr(a, rpn_t(1.0d0/bc))
! If b is an integer >= 2 calculate all roots
if (b%is_integer() .and. bc >= 2) then
nroots = nint(bc)
if (allocated(roots)) then
deallocate(roots)
end if
a_is_cart = a%is_cartesian()
base = to_polar_rpns(a)
z = base%get_value()
s = z%re ** (1.0d0/bc)
theta0 = merge(z%im*to_rad,z%im,degrees_mode)/nroots
delta_theta = two_pi/nroots
allocate(roots(nroots))
do i=1, nroots
phi = theta0 + (i-1)*delta_theta
if (a_is_cart) then
roots(i) = rpn_t(cmplx(round(s*cos(phi)),round(s*sin(phi))),a_is_cart)
else
if (degrees_mode) phi = phi*to_deg
roots(i) = rpn_t(cmplx(s,round(phi)),a_is_cart)
end if
end do
r = roots(1)
current_root = 1
else
r = a ** (1.0d0/bc)
end if
end function root_fr
module function next_root_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
if (nroots > 0) then
if (current_root == nroots) then
current_root = 1
else
current_root = current_root + 1
end if
r = roots(current_root)
else
r = a
end if
end function next_root_fr
module function previous_root_fr(a) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t) :: r
if (nroots > 0) then
if (current_root == 1) then
current_root = nroots
else
current_root = current_root - 1
end if
r = roots(current_root)
else
r = a
end if
end function previous_root_fr
module function atangent2_fr(a, b) result(r)
type(rpn_t), intent(in) :: a
type(rpn_t), intent(in) :: b
type(rpn_t) :: r
r%zdata = atan2(real(a%zdata),real(b%zdata)) * merge(to_deg,1.0d0,degrees_mode)
end function atangent2_fr
module function round(x) result(r)
real(8), intent(in) :: x
real(8) :: r
if (abs(x) < eps) then
r = 0
else
r = x
end if
end function round
module subroutine init(lang)
character(5), intent(in), optional :: lang
if (present(lang)) decimal = lang
call set_places(dec_places)
end subroutine init
module subroutine set_places(n)
integer, intent(in) :: n
if (n == 0) then
f_small = 'i0'
else
write(f_small,'(2(a,i0),a)') 'f',0,'.',n
write(f_large,'(2(a,i0),a)') 'en',10+n,'.',n
end if
dec_places = n
end subroutine set_places
module function get_places() result(r)
integer :: r
r = dec_places
end function get_places
end submodule rpn_sm

18
test_amap.f90 Normal file
View file

@ -0,0 +1,18 @@
program test_amap
use amap
implicit none
type(amap_t) :: my_amap
type(value_t) :: x
call my_amap%set('one',1.0d0)
call my_amap%set('two',2.d0)
call my_amap%set('three',3.0d0)
call my_amap%set('four',4.0d0)
call my_amap%set('five',5.0d0)
call my_amap%print
x = my_amap%get('four')
write(6,'(f0.6)') my_amap%get_value('four')
print *,my_amap%contains('one'),my_amap%contains('ten')
end program test_amap