forked from endernon/PGRData
5144 lines
No EOL
136 KiB
JSON
5144 lines
No EOL
136 KiB
JSON
[
|
|
{
|
|
"Id": 101,
|
|
"Priority": 10000,
|
|
"UpProbability": "Basic Mode",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 301,
|
|
"Priority": 8170,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 302,
|
|
"Priority": 8160,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 303,
|
|
"Priority": 8150,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 304,
|
|
"Priority": 8140,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 305,
|
|
"Priority": 8130,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 306,
|
|
"Priority": 8120,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 307,
|
|
"Priority": 8110,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 308,
|
|
"Priority": 8100,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 309,
|
|
"Priority": 8090,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 310,
|
|
"Priority": 8080,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 311,
|
|
"Priority": 8070,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 312,
|
|
"Priority": 8060,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 313,
|
|
"Priority": 8050,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 314,
|
|
"Priority": 8040,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 315,
|
|
"Priority": 8030,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 316,
|
|
"Priority": 8020,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 317,
|
|
"Priority": 8010,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 318,
|
|
"Priority": 8000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 319,
|
|
"Priority": 7990,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 320,
|
|
"Priority": 7980,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 321,
|
|
"Priority": 7970,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 322,
|
|
"Priority": 8180,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 323,
|
|
"Priority": 8190,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 324,
|
|
"Priority": 8200,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 325,
|
|
"Priority": 8210,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 326,
|
|
"Priority": 8220,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 327,
|
|
"Priority": 8230,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 328,
|
|
"Priority": 8240,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 329,
|
|
"Priority": 8250,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 330,
|
|
"Priority": 8260,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 331,
|
|
"Priority": 8270,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 332,
|
|
"Priority": 8280,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 333,
|
|
"Priority": 8290,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 334,
|
|
"Priority": 8300,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 335,
|
|
"Priority": 8310,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 336,
|
|
"Priority": 8400,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 337,
|
|
"Priority": 8600,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 338,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 339,
|
|
"Priority": 9010,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 340,
|
|
"Priority": 9020,
|
|
"UpProbability": "<color=#26bbf9>80% rate in 6\u2605 pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1030,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1031,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1032,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1033,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1034,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1035,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1037,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1038,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1039,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1041,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1042,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1043,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1044,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1045,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1046,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1047,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1048,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1050,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1051,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1052,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1053,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1054,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1055,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1056,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1057,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1058,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1059,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1061,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1062,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1063,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1064,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1065,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1066,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1067,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1068,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1069,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1070,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1071,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1072,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1073,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1074,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1075,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1076,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1077,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1078,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1079,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1080,
|
|
"Priority": 9710,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1081,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1082,
|
|
"Priority": 9690,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1083,
|
|
"Priority": 9680,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1084,
|
|
"Priority": 9670,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1085,
|
|
"Priority": 9660,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1086,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1087,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1088,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1089,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1090,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1091,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1092,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1093,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1094,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1095,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1096,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1097,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1098,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1099,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1100,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1101,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1102,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1103,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1104,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1105,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1106,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1107,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1108,
|
|
"Priority": 8800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1109,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1110,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1111,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1112,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1113,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1114,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1115,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1116,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1117,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1118,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1119,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1120,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1121,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1122,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1123,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1124,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1125,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1126,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1127,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1128,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1129,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1130,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1131,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1132,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1133,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1134,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1135,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1136,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1137,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1138,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1139,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1140,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1141,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1142,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1143,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1144,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1145,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1146,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1147,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1148,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2024,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2025,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2026,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2027,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2028,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2029,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2031,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2032,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2033,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2034,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2035,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2036,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2037,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2038,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2039,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2041,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2042,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2044,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2045,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2046,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2047,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2048,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2049,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2050,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2051,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2052,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2053,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2055,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2056,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2057,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2058,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2059,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2060,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2061,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2062,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2063,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2064,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2065,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2066,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2067,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2068,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2069,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2070,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2071,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2072,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2073,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2074,
|
|
"Priority": 9650,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2075,
|
|
"Priority": 9640,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2076,
|
|
"Priority": 9630,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2077,
|
|
"Priority": 9620,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2078,
|
|
"Priority": 9610,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2079,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2080,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2081,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2082,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2083,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2084,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2085,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2086,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2087,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2088,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2089,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2090,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2091,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2092,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2093,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2094,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2095,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2096,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2097,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2098,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2099,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2100,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2101,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2102,
|
|
"Priority": 8790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2103,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2104,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2105,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2106,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2107,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2108,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2109,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2110,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2111,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2112,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2113,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2114,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2115,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2116,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2117,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2118,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2119,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2120,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2121,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2122,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2123,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2124,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2125,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2126,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2127,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2128,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2129,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2130,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2131,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2132,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2133,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2134,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2135,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2136,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2137,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2138,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2139,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2140,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2141,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2142,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3000,
|
|
"Priority": 8000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3001,
|
|
"Priority": 8001,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3002,
|
|
"Priority": 8002,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3003,
|
|
"Priority": 8003,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3004,
|
|
"Priority": 8004,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3005,
|
|
"Priority": 8005,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3006,
|
|
"Priority": 8006,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3007,
|
|
"Priority": 8007,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3008,
|
|
"Priority": 8008,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3009,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3010,
|
|
"Priority": 8009,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3011,
|
|
"Priority": 9001,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3012,
|
|
"Priority": 8010,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3013,
|
|
"Priority": 9002,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3014,
|
|
"Priority": 8011,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3015,
|
|
"Priority": 9004,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3016,
|
|
"Priority": 8013,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3017,
|
|
"Priority": 9005,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3018,
|
|
"Priority": 8015,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3019,
|
|
"Priority": 9006,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3020,
|
|
"Priority": 8016,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4000,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4001,
|
|
"Priority": 9501,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4002,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4003,
|
|
"Priority": 9502,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4004,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4005,
|
|
"Priority": 9503,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4006,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4007,
|
|
"Priority": 9504,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4008,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4009,
|
|
"Priority": 9505,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4010,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4011,
|
|
"Priority": 9506,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5000,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5001,
|
|
"Priority": 9999,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5002,
|
|
"Priority": 9998,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5003,
|
|
"Priority": 9997,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5004,
|
|
"Priority": 9996,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5005,
|
|
"Priority": 9995,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5006,
|
|
"Priority": 9994,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5007,
|
|
"Priority": 9993,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5008,
|
|
"Priority": 9992,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5009,
|
|
"Priority": 9070,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5010,
|
|
"Priority": 9060,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5011,
|
|
"Priority": 9050,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5012,
|
|
"Priority": 9040,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5013,
|
|
"Priority": 9030,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5014,
|
|
"Priority": 9020,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5015,
|
|
"Priority": 9010,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5016,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5017,
|
|
"Priority": 8990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5018,
|
|
"Priority": 8980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5019,
|
|
"Priority": 8970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5020,
|
|
"Priority": 8960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5500,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5501,
|
|
"Priority": 9999,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5502,
|
|
"Priority": 9998,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5503,
|
|
"Priority": 9997,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5504,
|
|
"Priority": 9996,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5505,
|
|
"Priority": 9995,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5506,
|
|
"Priority": 9994,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5507,
|
|
"Priority": 9993,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5600,
|
|
"Priority": 9990,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5601,
|
|
"Priority": 9989,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5602,
|
|
"Priority": 9988,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5603,
|
|
"Priority": 9987,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5604,
|
|
"Priority": 9986,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5605,
|
|
"Priority": 9985,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 80%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5606,
|
|
"Priority": 9984,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 80%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5607,
|
|
"Priority": 9983,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 80%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6000,
|
|
"Priority": 9991,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6001,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6002,
|
|
"Priority": 9989,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6003,
|
|
"Priority": 9988,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6004,
|
|
"Priority": 9987,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6005,
|
|
"Priority": 9986,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6006,
|
|
"Priority": 9985,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6007,
|
|
"Priority": 9984,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6008,
|
|
"Priority": 9983,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6009,
|
|
"Priority": 8950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6010,
|
|
"Priority": 8940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6011,
|
|
"Priority": 8930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6012,
|
|
"Priority": 8920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6013,
|
|
"Priority": 8910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6014,
|
|
"Priority": 8900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6015,
|
|
"Priority": 8890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6016,
|
|
"Priority": 8880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6017,
|
|
"Priority": 8870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6018,
|
|
"Priority": 8860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6019,
|
|
"Priority": 8850,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6020,
|
|
"Priority": 8840,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6500,
|
|
"Priority": 9995,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6501,
|
|
"Priority": 9994,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6502,
|
|
"Priority": 9993,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6503,
|
|
"Priority": 9992,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6504,
|
|
"Priority": 9991,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6505,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6506,
|
|
"Priority": 9989,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6507,
|
|
"Priority": 9988,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7001,
|
|
"Priority": 5000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7002,
|
|
"Priority": 1000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7003,
|
|
"Priority": 5001,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7004,
|
|
"Priority": 1001,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7005,
|
|
"Priority": 5002,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7006,
|
|
"Priority": 1002,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7007,
|
|
"Priority": 8830,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7008,
|
|
"Priority": 8820,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7009,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7010,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7011,
|
|
"Priority": 10001,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7012,
|
|
"Priority": 10001,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8001,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8002,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8003,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8004,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8005,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8006,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8007,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8008,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8009,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8010,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8011,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8012,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8013,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8014,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8015,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8016,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8017,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8018,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8019,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8020,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8021,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8022,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8023,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8024,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8025,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8026,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8501,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8502,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8503,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8504,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8505,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8506,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8507,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8508,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8509,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8510,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8511,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8512,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8513,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8514,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8515,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8516,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8517,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8518,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8519,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8520,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8521,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8522,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8523,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8524,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8525,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8526,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2043,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1049,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2022,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2023,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100200,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1028,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1029,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100100,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100300,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100400,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100500,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101800,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101900,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102000,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102100,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102200,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102300,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102400,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102500,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102600,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102700,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102800,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102900,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101000,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101500,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103000,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103100,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103200,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103300,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103400,
|
|
"Priority": 9710,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103500,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103600,
|
|
"Priority": 9690,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103700,
|
|
"Priority": 9680,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103800,
|
|
"Priority": 9670,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103900,
|
|
"Priority": 9660,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104000,
|
|
"Priority": 9650,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104100,
|
|
"Priority": 9640,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104200,
|
|
"Priority": 9630,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104300,
|
|
"Priority": 9620,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104400,
|
|
"Priority": 9610,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104500,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104600,
|
|
"Priority": 9590,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104700,
|
|
"Priority": 9580,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104800,
|
|
"Priority": 9570,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104900,
|
|
"Priority": 9560,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105000,
|
|
"Priority": 9550,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105100,
|
|
"Priority": 9540,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105200,
|
|
"Priority": 9530,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105300,
|
|
"Priority": 9520,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105400,
|
|
"Priority": 9510,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105500,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105600,
|
|
"Priority": 9490,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105700,
|
|
"Priority": 9480,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105800,
|
|
"Priority": 9470,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105900,
|
|
"Priority": 9460,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106000,
|
|
"Priority": 9450,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106100,
|
|
"Priority": 9440,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106200,
|
|
"Priority": 9430,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106300,
|
|
"Priority": 9420,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106400,
|
|
"Priority": 9410,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106500,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106600,
|
|
"Priority": 9390,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106700,
|
|
"Priority": 9380,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106800,
|
|
"Priority": 9370,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106900,
|
|
"Priority": 9360,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107000,
|
|
"Priority": 9350,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107100,
|
|
"Priority": 9340,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107200,
|
|
"Priority": 9330,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107300,
|
|
"Priority": 9320,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107400,
|
|
"Priority": 9310,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107500,
|
|
"Priority": 9300,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107600,
|
|
"Priority": 9290,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107700,
|
|
"Priority": 9280,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107800,
|
|
"Priority": 9270,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 107900,
|
|
"Priority": 9260,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108000,
|
|
"Priority": 9250,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108100,
|
|
"Priority": 9240,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108200,
|
|
"Priority": 9230,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108300,
|
|
"Priority": 9220,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108400,
|
|
"Priority": 9210,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108500,
|
|
"Priority": 9200,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108600,
|
|
"Priority": 9190,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108700,
|
|
"Priority": 9180,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108800,
|
|
"Priority": 9170,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 108900,
|
|
"Priority": 9160,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109000,
|
|
"Priority": 9150,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109100,
|
|
"Priority": 9140,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109200,
|
|
"Priority": 9130,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109300,
|
|
"Priority": 9120,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109400,
|
|
"Priority": 9110,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109500,
|
|
"Priority": 9100,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109600,
|
|
"Priority": 9090,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109700,
|
|
"Priority": 9080,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109800,
|
|
"Priority": 8780,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 109900,
|
|
"Priority": 8770,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110000,
|
|
"Priority": 8760,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110100,
|
|
"Priority": 8750,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110200,
|
|
"Priority": 8740,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110300,
|
|
"Priority": 8730,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110400,
|
|
"Priority": 8720,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110500,
|
|
"Priority": 8710,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110600,
|
|
"Priority": 8700,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110700,
|
|
"Priority": 8690,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110800,
|
|
"Priority": 8680,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 110900,
|
|
"Priority": 8670,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111000,
|
|
"Priority": 8660,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111100,
|
|
"Priority": 8650,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111200,
|
|
"Priority": 8640,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111300,
|
|
"Priority": 8630,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111400,
|
|
"Priority": 8620,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111500,
|
|
"Priority": 8610,
|
|
"UpProbability": "<color=#26bbf9>Increase chance to obtain an S-rank by 70%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111600,
|
|
"Priority": 8600,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111700,
|
|
"Priority": 8590,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111800,
|
|
"Priority": 8580,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 111900,
|
|
"Priority": 8570,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112000,
|
|
"Priority": 8560,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112100,
|
|
"Priority": 8550,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112200,
|
|
"Priority": 8540,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112300,
|
|
"Priority": 8530,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112400,
|
|
"Priority": 8520,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112500,
|
|
"Priority": 8510,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112600,
|
|
"Priority": 8500,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112700,
|
|
"Priority": 8490,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112800,
|
|
"Priority": 8480,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 112900,
|
|
"Priority": 8470,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113000,
|
|
"Priority": 8460,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113100,
|
|
"Priority": 8450,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113200,
|
|
"Priority": 8440,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113300,
|
|
"Priority": 8430,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113400,
|
|
"Priority": 8420,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113500,
|
|
"Priority": 8410,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113600,
|
|
"Priority": 8400,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113700,
|
|
"Priority": 8390,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113800,
|
|
"Priority": 8380,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 113900,
|
|
"Priority": 8370,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114000,
|
|
"Priority": 8360,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114100,
|
|
"Priority": 8350,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114200,
|
|
"Priority": 8340,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114300,
|
|
"Priority": 8330,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114400,
|
|
"Priority": 8320,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114500,
|
|
"Priority": 8310,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114600,
|
|
"Priority": 8300,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114700,
|
|
"Priority": 8290,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114800,
|
|
"Priority": 8280,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 114900,
|
|
"Priority": 8270,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115000,
|
|
"Priority": 8260,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115100,
|
|
"Priority": 8250,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115200,
|
|
"Priority": 8240,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115300,
|
|
"Priority": 8230,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115400,
|
|
"Priority": 8220,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115500,
|
|
"Priority": 8210,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115600,
|
|
"Priority": 8200,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115700,
|
|
"Priority": 8190,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115800,
|
|
"Priority": 8180,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 115900,
|
|
"Priority": 8170,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116000,
|
|
"Priority": 8160,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116100,
|
|
"Priority": 8150,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116200,
|
|
"Priority": 8140,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116300,
|
|
"Priority": 8130,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116400,
|
|
"Priority": 8120,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116500,
|
|
"Priority": 8110,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116600,
|
|
"Priority": 8100,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116700,
|
|
"Priority": 8090,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116800,
|
|
"Priority": 8080,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 116900,
|
|
"Priority": 8070,
|
|
"UpProbability": "<color=#26bbf9>S\u30af\u30e9\u30b9\u6392\u51fa\u6642\u306e\u51fa\u73fe\u78ba\u738770%</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100000,
|
|
"Priority": 10010,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100001,
|
|
"Priority": 10010,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1036,
|
|
"Priority": 10020,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2030,
|
|
"Priority": 10020,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170001,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170002,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170003,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170004,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170005,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170006,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170007,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170008,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170009,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170010,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170011,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170012,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170013,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170014,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170015,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170016,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170017,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170018,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170019,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170020,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170021,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170022,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170023,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170024,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170025,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170026,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170027,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170028,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170029,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170030,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170031,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170032,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170033,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170034,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170035,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170036,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170037,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170038,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170039,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170041,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170042,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170043,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170044,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1060,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2054,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170045,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170046,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170047,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170048,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170049,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170050,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170051,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170052,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170053,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170054,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170055,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170056,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170057,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170058,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170059,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170060,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170061,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170062,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170063,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170064,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170065,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170066,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170067,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170068,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170069,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170070,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170071,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170072,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170073,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170074,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170075,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170076,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170077,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170078,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170079,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170080,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170081,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170082,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170083,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170084,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170085,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170086,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170087,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170088,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170089,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170090,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170091,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170092,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170093,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170094,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170095,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170096,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170097,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170098,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170099,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170100,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170101,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170102,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170103,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170104,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170105,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170106,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170107,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170108,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170109,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170110,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170111,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170112,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170113,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170114,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170115,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170116,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170117,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170118,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170119,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170120,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170121,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170122,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170123,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170124,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170125,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170126,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170127,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170128,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170129,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170130,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170131,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170132,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170133,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170134,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170135,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170136,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170137,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170138,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170139,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170140,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170141,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170142,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170143,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170144,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170145,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170146,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170147,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170148,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170149,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170150,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170151,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170152,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170153,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170154,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170155,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170156,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170157,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170158,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170159,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170160,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170161,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170162,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170163,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170164,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170165,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170166,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170167,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170168,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170169,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170170,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170171,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170172,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170173,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170174,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170175,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170176,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170177,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170178,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170179,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170180,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170181,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170182,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170183,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170184,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170185,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170186,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170187,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170188,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170189,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170190,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170191,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170192,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170193,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170194,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170195,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170196,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170197,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170198,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170199,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170200,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170201,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170202,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170203,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170204,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170205,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170206,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170207,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170208,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170209,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170210,
|
|
"Priority": 9300,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170211,
|
|
"Priority": 9200,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170212,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170213,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170214,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170215,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170216,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170217,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170218,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170219,
|
|
"Priority": 9300,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170220,
|
|
"Priority": 9200,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170223,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170224,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170225,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170226,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170227,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170228,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170229,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170230,
|
|
"Priority": 9300,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170231,
|
|
"Priority": 9200,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170232,
|
|
"Priority": 9100,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170233,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170234,
|
|
"Priority": 8900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170235,
|
|
"Priority": 8800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170236,
|
|
"Priority": 8700,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170237,
|
|
"Priority": 8600,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170238,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170239,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170240,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170241,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170242,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170243,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170244,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170245,
|
|
"Priority": 9300,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170246,
|
|
"Priority": 9200,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170247,
|
|
"Priority": 9100,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170248,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170249,
|
|
"Priority": 8900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170250,
|
|
"Priority": 8800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170251,
|
|
"Priority": 8700,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170252,
|
|
"Priority": 8600,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
}
|
|
] |