49 lines
1.5 KiB
Python
49 lines
1.5 KiB
Python
|
import numpy as np
|
||
|
import numpy.linalg as la
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Attack speed independent. Fast speed losses not accounted for
|
||
|
mana_consumption = 3
|
||
|
mana_steal = 10 # /3s
|
||
|
mana_regen = 0 # /5s
|
||
|
#mana_steal = 5 # /3s
|
||
|
#mana_regen = 5 # /5s
|
||
|
natural_regen = 1
|
||
|
|
||
|
weight_natural = 8/15 # 4/5 * 2/3
|
||
|
weight_mr = 2/15 # 1/5 * 2/3
|
||
|
weight_ms = 4/15 # 4/5 * 1/3
|
||
|
weight_mr_ms = 1/15 # 1/5 * 1/3
|
||
|
|
||
|
MAX_MANA = 20
|
||
|
transition_matrix = np.zeros((MAX_MANA, MAX_MANA))
|
||
|
for i in range(MAX_MANA):
|
||
|
natural_state = max(0, i - mana_consumption + natural_regen)
|
||
|
mr_state = min(19, natural_state + mana_regen)
|
||
|
ms_state = min(19, natural_state + mana_steal)
|
||
|
mr_ms_state = min(19, natural_state + mana_regen + mana_steal)
|
||
|
transition_matrix[natural_state, i] = weight_natural
|
||
|
transition_matrix[mr_state, i] += weight_mr
|
||
|
transition_matrix[ms_state, i] += weight_ms
|
||
|
transition_matrix[mr_ms_state, i] += weight_mr_ms
|
||
|
|
||
|
eigval, eigvec = la.eig(transition_matrix)
|
||
|
print(eigval)
|
||
|
eps = 0.00001
|
||
|
ind = np.argwhere(abs(eigval - 1) < eps)
|
||
|
steady_state = abs(eigvec[:, ind])
|
||
|
steady_state /= np.sum(steady_state)
|
||
|
cumulative = np.cumsum(steady_state)
|
||
|
print("mana\tprob cumsum")
|
||
|
for i in range(MAX_MANA):
|
||
|
print(f"{i+1}\t{cumulative[i]}")
|
||
|
|
||
|
plt.figure()
|
||
|
plt.scatter(range(len(steady_state)), steady_state)
|
||
|
plt.xlim(0, 19)
|
||
|
plt.ylim(0, 0.2)
|
||
|
plt.xlabel("Mana Value")
|
||
|
plt.ylabel("Probability at t=infty")
|
||
|
plt.title(f"Build={mana_regen}mr,{mana_steal}ms,{mana_consumption}mana/sec")
|
||
|
plt.show()
|