2022-02-06 00:04:01 -08:00
|
|
|
import numpy as np
|
|
|
|
import numpy.linalg as la
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
# Super slow attack speed. (Idealized to 1 hit/2s, 2/3 chance of proc
|
2022-02-13 10:47:23 -08:00
|
|
|
mana_consumption = 6
|
|
|
|
mana_steal = 14 # /3s
|
|
|
|
mana_regen = 6 # /5s
|
2022-02-06 00:04:01 -08:00
|
|
|
#mana_steal = 5 # /3s
|
|
|
|
#mana_regen = 5 # /5s
|
|
|
|
natural_regen = 1
|
|
|
|
|
|
|
|
ms_period = 2
|
|
|
|
ms_chance = ms_period / 3
|
|
|
|
no_ms_chance = 1 - ms_chance
|
|
|
|
|
|
|
|
MAX_MANA = 20
|
|
|
|
TIME_CYCLE = 10
|
|
|
|
transition_matrix = np.zeros((MAX_MANA * TIME_CYCLE, MAX_MANA * TIME_CYCLE))
|
|
|
|
for j in range(TIME_CYCLE):
|
|
|
|
for i in range(MAX_MANA):
|
|
|
|
natural_state = max(0, i - mana_consumption + natural_regen)
|
|
|
|
if j % 5 == 0: # mr activation
|
|
|
|
natural_state = min(19, natural_state + mana_regen)
|
|
|
|
next_ind = ((j+1) % TIME_CYCLE) * MAX_MANA
|
|
|
|
if j % ms_period == 0: # ms activation
|
|
|
|
ms_state = min(19, natural_state + mana_steal)
|
|
|
|
transition_matrix[next_ind + natural_state, i+j*MAX_MANA] = no_ms_chance
|
|
|
|
transition_matrix[next_ind + ms_state, i+j*MAX_MANA] += ms_chance
|
|
|
|
else:
|
|
|
|
transition_matrix[next_ind + natural_state, i+j*MAX_MANA] = 1
|
|
|
|
|
|
|
|
eigval, eigvec = la.eig(transition_matrix)
|
|
|
|
print(eigval)
|
|
|
|
eps = 0.00001
|
|
|
|
ind = np.argwhere(abs(eigval - 1) < eps)
|
|
|
|
steady_state = np.sum(abs(eigvec[:, ind]).reshape((TIME_CYCLE, MAX_MANA)), axis=0)
|
|
|
|
steady_state /= np.sum(steady_state)
|
|
|
|
cumulative = np.cumsum(steady_state)
|
|
|
|
print("mana\tcumulative probability")
|
|
|
|
for i in range(MAX_MANA):
|
|
|
|
print(f"{i+1}\t{cumulative[i]}")
|
|
|
|
|
2022-02-13 10:47:23 -08:00
|
|
|
mana_limit = 6+mana_consumption
|
|
|
|
|
2022-02-06 00:04:01 -08:00
|
|
|
x_ticks = list(range(len(steady_state)))
|
|
|
|
plt.figure()
|
|
|
|
plt.scatter(x_ticks, steady_state, label="mana values")
|
|
|
|
plt.xlim(0, 19)
|
|
|
|
plt.ylim(0, 0.3)
|
2022-02-13 10:47:23 -08:00
|
|
|
plt.axvline(x=mana_limit, color="red")
|
2022-02-06 00:04:01 -08:00
|
|
|
plt.xlabel("Mana Value")
|
|
|
|
plt.xticks(x_ticks)
|
|
|
|
plt.ylabel("Probability at t=infty")
|
|
|
|
plt.legend()
|
|
|
|
ax2 = plt.gca().twinx()
|
2022-02-13 10:47:23 -08:00
|
|
|
ax2.plot(x_ticks, cumulative, label="cumulative probability", color="pink")
|
|
|
|
|
|
|
|
plt.text(mana_limit - 0.2, cumulative[mana_limit] + 0.03, f"time with sprint loss: {cumulative[mana_limit]*100:.2f}%", horizontalalignment='right')
|
|
|
|
plt.scatter((mana_limit,), (cumulative[mana_limit],), color="red")
|
2022-02-06 00:04:01 -08:00
|
|
|
ax2.set_ylim(0, 1)
|
|
|
|
ax2.set_ylabel("Cumulative probability at t=infty")
|
2022-02-13 10:47:23 -08:00
|
|
|
plt.title(f"Super Slow Speed: Build={mana_regen}mr,{mana_steal}ms,{mana_consumption}mana/sec")
|
2022-02-06 00:04:01 -08:00
|
|
|
plt.legend()
|
|
|
|
plt.show()
|