2492 lines
No EOL
62 KiB
JSON
2492 lines
No EOL
62 KiB
JSON
[
|
|
{
|
|
"Id": 3009,
|
|
"Priority": 9000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101,
|
|
"Priority": 10000,
|
|
"UpProbability": "Basic Mode",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3000,
|
|
"Priority": 8000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3001,
|
|
"Priority": 8001,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3002,
|
|
"Priority": 8002,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3003,
|
|
"Priority": 8003,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3004,
|
|
"Priority": 8004,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3005,
|
|
"Priority": 8005,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3006,
|
|
"Priority": 8006,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3007,
|
|
"Priority": 8007,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3008,
|
|
"Priority": 8008,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3010,
|
|
"Priority": 8009,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3011,
|
|
"Priority": 9001,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3012,
|
|
"Priority": 8010,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3013,
|
|
"Priority": 9002,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3014,
|
|
"Priority": 8011,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4000,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 301,
|
|
"Priority": 8170,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 302,
|
|
"Priority": 8160,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 303,
|
|
"Priority": 8150,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 304,
|
|
"Priority": 8140,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 305,
|
|
"Priority": 8130,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 306,
|
|
"Priority": 8120,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 307,
|
|
"Priority": 8110,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 308,
|
|
"Priority": 8100,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 309,
|
|
"Priority": 8090,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 310,
|
|
"Priority": 8080,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 311,
|
|
"Priority": 8070,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 312,
|
|
"Priority": 8060,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 313,
|
|
"Priority": 8050,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 314,
|
|
"Priority": 8040,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 315,
|
|
"Priority": 8030,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 316,
|
|
"Priority": 8020,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 317,
|
|
"Priority": 8010,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 318,
|
|
"Priority": 8000,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 319,
|
|
"Priority": 7990,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 320,
|
|
"Priority": 7980,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 321,
|
|
"Priority": 7970,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 322,
|
|
"Priority": 8180,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 323,
|
|
"Priority": 8190,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 324,
|
|
"Priority": 8200,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 325,
|
|
"Priority": 8210,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2024,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2025,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2026,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2027,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2028,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2029,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1030,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1031,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1032,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1033,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1034,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1035,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2031,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2032,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2033,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2034,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2035,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2036,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1037,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1038,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1039,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1041,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1042,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2037,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2038,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2039,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2041,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2042,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1043,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1044,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1045,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1046,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1047,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1048,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 326,
|
|
"Priority": 8220,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 327,
|
|
"Priority": 8230,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1050,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1051,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1052,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1053,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1054,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1055,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2044,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2045,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2046,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2047,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2048,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2049,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3015,
|
|
"Priority": 9004,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3016,
|
|
"Priority": 8013,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4001,
|
|
"Priority": 9501,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4002,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4003,
|
|
"Priority": 9502,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 328,
|
|
"Priority": 8240,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1056,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1057,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1058,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1059,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2050,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2051,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2052,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2053,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5000,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5001,
|
|
"Priority": 9999,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5002,
|
|
"Priority": 9998,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5003,
|
|
"Priority": 9997,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5004,
|
|
"Priority": 9996,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5005,
|
|
"Priority": 9995,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5006,
|
|
"Priority": 9994,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5007,
|
|
"Priority": 9993,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5008,
|
|
"Priority": 9992,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6000,
|
|
"Priority": 9991,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6001,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6002,
|
|
"Priority": 9989,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6003,
|
|
"Priority": 9988,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6004,
|
|
"Priority": 9987,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6005,
|
|
"Priority": 9986,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6006,
|
|
"Priority": 9985,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6007,
|
|
"Priority": 9984,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6008,
|
|
"Priority": 9983,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5500,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5501,
|
|
"Priority": 9999,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5502,
|
|
"Priority": 9998,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5503,
|
|
"Priority": 9997,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5504,
|
|
"Priority": 9996,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6500,
|
|
"Priority": 9995,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6501,
|
|
"Priority": 9994,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6502,
|
|
"Priority": 9993,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6503,
|
|
"Priority": 9992,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 6504,
|
|
"Priority": 9991,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5600,
|
|
"Priority": 9990,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5601,
|
|
"Priority": 9989,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5602,
|
|
"Priority": 9988,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5603,
|
|
"Priority": 9987,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 5604,
|
|
"Priority": 9986,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1061,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1062,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1063,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1064,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1065,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1066,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2055,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2056,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2057,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2058,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2059,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2060,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 329,
|
|
"Priority": 8250,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 330,
|
|
"Priority": 8260,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1067,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1068,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1069,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1070,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1071,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1072,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2061,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2062,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2063,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2064,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2065,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2066,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3017,
|
|
"Priority": 9005,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3018,
|
|
"Priority": 8015,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4004,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 4005,
|
|
"Priority": 9503,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 331,
|
|
"Priority": 8270,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1073,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1074,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1075,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1076,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1077,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1078,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1079,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2067,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2068,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2069,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2070,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2071,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2072,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2073,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7001,
|
|
"Priority": 5000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7002,
|
|
"Priority": 1000,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7003,
|
|
"Priority": 5001,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 7004,
|
|
"Priority": 1001,
|
|
"UpProbability": "<color=#26bbf9>80% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 332,
|
|
"Priority": 8280,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1080,
|
|
"Priority": 9710,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1081,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1082,
|
|
"Priority": 9690,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1083,
|
|
"Priority": 9680,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1084,
|
|
"Priority": 9670,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1085,
|
|
"Priority": 9660,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2074,
|
|
"Priority": 9650,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2075,
|
|
"Priority": 9640,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2076,
|
|
"Priority": 9630,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2077,
|
|
"Priority": 9620,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2078,
|
|
"Priority": 9610,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2079,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3019,
|
|
"Priority": 9006,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 3020,
|
|
"Priority": 8016,
|
|
"UpProbability": "<color=#26bbf9>80% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8001,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8002,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8003,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8004,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8005,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8006,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8007,
|
|
"Priority": 9940,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8008,
|
|
"Priority": 9930,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8009,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8010,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8011,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8501,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8502,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8503,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8504,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8505,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8506,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8507,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8508,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8509,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8510,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 8511,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 333,
|
|
"Priority": 8290,
|
|
"UpProbability": null,
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1086,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1087,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1088,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1089,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1090,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1091,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1092,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2080,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2081,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2082,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2083,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2084,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2085,
|
|
"Priority": 9960,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2086,
|
|
"Priority": 9950,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2043,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1049,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2022,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2023,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100200,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1028,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1029,
|
|
"Priority": 9990,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100100,
|
|
"Priority": 9920,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100300,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100400,
|
|
"Priority": 9910,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100500,
|
|
"Priority": 9900,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101800,
|
|
"Priority": 9890,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101900,
|
|
"Priority": 9880,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102000,
|
|
"Priority": 9870,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102100,
|
|
"Priority": 9860,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102200,
|
|
"Priority": 9850,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102300,
|
|
"Priority": 9840,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102400,
|
|
"Priority": 9830,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102500,
|
|
"Priority": 9820,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102600,
|
|
"Priority": 9810,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102700,
|
|
"Priority": 9800,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102800,
|
|
"Priority": 9790,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 102900,
|
|
"Priority": 9780,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101000,
|
|
"Priority": 9770,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 101500,
|
|
"Priority": 9760,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103000,
|
|
"Priority": 9750,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103100,
|
|
"Priority": 9740,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103200,
|
|
"Priority": 9730,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103300,
|
|
"Priority": 9720,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103400,
|
|
"Priority": 9710,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103500,
|
|
"Priority": 9700,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103600,
|
|
"Priority": 9690,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103700,
|
|
"Priority": 9680,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103800,
|
|
"Priority": 9670,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 103900,
|
|
"Priority": 9660,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104000,
|
|
"Priority": 9650,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104100,
|
|
"Priority": 9640,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104200,
|
|
"Priority": 9630,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104300,
|
|
"Priority": 9620,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104400,
|
|
"Priority": 9610,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104500,
|
|
"Priority": 9600,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104600,
|
|
"Priority": 9590,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104700,
|
|
"Priority": 9580,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104800,
|
|
"Priority": 9570,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 104900,
|
|
"Priority": 9560,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105000,
|
|
"Priority": 9550,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105100,
|
|
"Priority": 9540,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105200,
|
|
"Priority": 9530,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105300,
|
|
"Priority": 9520,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105400,
|
|
"Priority": 9510,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105500,
|
|
"Priority": 9500,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105600,
|
|
"Priority": 9490,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105700,
|
|
"Priority": 9480,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105800,
|
|
"Priority": 9470,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 105900,
|
|
"Priority": 9460,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106000,
|
|
"Priority": 9450,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106100,
|
|
"Priority": 9440,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106200,
|
|
"Priority": 9430,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106300,
|
|
"Priority": 9420,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106400,
|
|
"Priority": 9410,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 106500,
|
|
"Priority": 9400,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100000,
|
|
"Priority": 10010,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 100001,
|
|
"Priority": 10010,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in A-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1036,
|
|
"Priority": 10020,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2030,
|
|
"Priority": 10020,
|
|
"UpProbability": "<color=#ff8d1e>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170001,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170002,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170003,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170004,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170005,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170006,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170007,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170008,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170009,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170010,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170011,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170012,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170013,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170014,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170015,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170016,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170017,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170018,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170019,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170020,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170021,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170022,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170023,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170024,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170025,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170026,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170027,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170028,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170029,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170030,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170031,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170032,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170033,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170034,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170035,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170036,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170037,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170038,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170039,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170040,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170041,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170042,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170043,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170044,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 1060,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 2054,
|
|
"Priority": 10000,
|
|
"UpProbability": "<color=#26bbf9>100% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170045,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170046,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170047,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170048,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170049,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170050,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170051,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170052,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170053,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170054,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170055,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170056,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170057,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170058,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170059,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170060,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170061,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170062,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170063,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170064,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170065,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170066,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170067,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170068,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170069,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170070,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170071,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170072,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170073,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170074,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170075,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170076,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170077,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170078,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170079,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170080,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170081,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170082,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170083,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170084,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170085,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170086,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170087,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170088,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170089,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170090,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170091,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170092,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170093,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170094,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170095,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170096,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170097,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170098,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170099,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170100,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170101,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170102,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170103,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170104,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170105,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170106,
|
|
"Priority": 9980,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170107,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
},
|
|
{
|
|
"Id": 170108,
|
|
"Priority": 9970,
|
|
"UpProbability": "<color=#26bbf9>70% rate in S-Rank pool</color>",
|
|
"TagImg": null
|
|
}
|
|
] |