2492 lines
No EOL
61 KiB
JSON
2492 lines
No EOL
61 KiB
JSON
[
|
|
{
|
|
"Id":3009,
|
|
"Priority":9000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":101,
|
|
"Priority":10000,
|
|
"UpProbability":"Basic Mode",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3000,
|
|
"Priority":8000,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3001,
|
|
"Priority":8001,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3002,
|
|
"Priority":8002,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3003,
|
|
"Priority":8003,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3004,
|
|
"Priority":8004,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3005,
|
|
"Priority":8005,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3006,
|
|
"Priority":8006,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3007,
|
|
"Priority":8007,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3008,
|
|
"Priority":8008,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3010,
|
|
"Priority":8009,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3011,
|
|
"Priority":9001,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3012,
|
|
"Priority":8010,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3013,
|
|
"Priority":9002,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3014,
|
|
"Priority":8011,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4000,
|
|
"Priority":9500,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":301,
|
|
"Priority":8170,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":302,
|
|
"Priority":8160,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":303,
|
|
"Priority":8150,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":304,
|
|
"Priority":8140,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":305,
|
|
"Priority":8130,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":306,
|
|
"Priority":8120,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":307,
|
|
"Priority":8110,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":308,
|
|
"Priority":8100,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":309,
|
|
"Priority":8090,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":310,
|
|
"Priority":8080,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":311,
|
|
"Priority":8070,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":312,
|
|
"Priority":8060,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":313,
|
|
"Priority":8050,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":314,
|
|
"Priority":8040,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":315,
|
|
"Priority":8030,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":316,
|
|
"Priority":8020,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":317,
|
|
"Priority":8010,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":318,
|
|
"Priority":8000,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":319,
|
|
"Priority":7990,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":320,
|
|
"Priority":7980,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":321,
|
|
"Priority":7970,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":322,
|
|
"Priority":8180,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":323,
|
|
"Priority":8190,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":324,
|
|
"Priority":8200,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":325,
|
|
"Priority":8210,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2024,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2025,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2026,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2027,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2028,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2029,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1030,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1031,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1032,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1033,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1034,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1035,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2031,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2032,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2033,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2034,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2035,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2036,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1037,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1038,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1039,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1040,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1041,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1042,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2037,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2038,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2039,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2040,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2041,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2042,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1043,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1044,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1045,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1046,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1047,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1048,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":326,
|
|
"Priority":8220,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":327,
|
|
"Priority":8230,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1050,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1051,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1052,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1053,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1054,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1055,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2044,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2045,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2046,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2047,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2048,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2049,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3015,
|
|
"Priority":9004,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3016,
|
|
"Priority":8013,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4001,
|
|
"Priority":9501,
|
|
"UpProbability":"<color=#26bbf9>80% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4002,
|
|
"Priority":9800,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4003,
|
|
"Priority":9502,
|
|
"UpProbability":"<color=#26bbf9>80% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":328,
|
|
"Priority":8240,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1056,
|
|
"Priority":9940,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1057,
|
|
"Priority":9930,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1058,
|
|
"Priority":9920,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1059,
|
|
"Priority":9910,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2050,
|
|
"Priority":9940,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2051,
|
|
"Priority":9930,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2052,
|
|
"Priority":9920,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2053,
|
|
"Priority":9910,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5000,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5001,
|
|
"Priority":9999,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5002,
|
|
"Priority":9998,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5003,
|
|
"Priority":9997,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5004,
|
|
"Priority":9996,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5005,
|
|
"Priority":9995,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5006,
|
|
"Priority":9994,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5007,
|
|
"Priority":9993,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5008,
|
|
"Priority":9992,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6000,
|
|
"Priority":9991,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6001,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6002,
|
|
"Priority":9989,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6003,
|
|
"Priority":9988,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6004,
|
|
"Priority":9987,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6005,
|
|
"Priority":9986,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6006,
|
|
"Priority":9985,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6007,
|
|
"Priority":9984,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6008,
|
|
"Priority":9983,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5500,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5501,
|
|
"Priority":9999,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5502,
|
|
"Priority":9998,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5503,
|
|
"Priority":9997,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5504,
|
|
"Priority":9996,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6500,
|
|
"Priority":9995,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6501,
|
|
"Priority":9994,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6502,
|
|
"Priority":9993,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6503,
|
|
"Priority":9992,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":6504,
|
|
"Priority":9991,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5600,
|
|
"Priority":9990,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5601,
|
|
"Priority":9989,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5602,
|
|
"Priority":9988,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5603,
|
|
"Priority":9987,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":5604,
|
|
"Priority":9986,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1061,
|
|
"Priority":9900,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1062,
|
|
"Priority":9890,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1063,
|
|
"Priority":9880,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1064,
|
|
"Priority":9870,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1065,
|
|
"Priority":9860,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1066,
|
|
"Priority":9850,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2055,
|
|
"Priority":9900,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2056,
|
|
"Priority":9890,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2057,
|
|
"Priority":9880,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2058,
|
|
"Priority":9870,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2059,
|
|
"Priority":9860,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2060,
|
|
"Priority":9850,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":329,
|
|
"Priority":8250,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":330,
|
|
"Priority":8260,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1067,
|
|
"Priority":9840,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1068,
|
|
"Priority":9830,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1069,
|
|
"Priority":9820,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1070,
|
|
"Priority":9810,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1071,
|
|
"Priority":9800,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1072,
|
|
"Priority":9790,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2061,
|
|
"Priority":9840,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2062,
|
|
"Priority":9830,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2063,
|
|
"Priority":9820,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2064,
|
|
"Priority":9810,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2065,
|
|
"Priority":9800,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2066,
|
|
"Priority":9790,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3017,
|
|
"Priority":9005,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3018,
|
|
"Priority":8015,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4004,
|
|
"Priority":9790,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":4005,
|
|
"Priority":9503,
|
|
"UpProbability":"<color=#26bbf9>80% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":331,
|
|
"Priority":8270,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1073,
|
|
"Priority":9780,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1074,
|
|
"Priority":9770,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1075,
|
|
"Priority":9760,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1076,
|
|
"Priority":9750,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1077,
|
|
"Priority":9740,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1078,
|
|
"Priority":9730,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1079,
|
|
"Priority":9720,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2067,
|
|
"Priority":9780,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2068,
|
|
"Priority":9770,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2069,
|
|
"Priority":9760,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2070,
|
|
"Priority":9750,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2071,
|
|
"Priority":9740,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2072,
|
|
"Priority":9730,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2073,
|
|
"Priority":9720,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":7001,
|
|
"Priority":5000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":7002,
|
|
"Priority":1000,
|
|
"UpProbability":"<color=#26bbf9>80% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":7003,
|
|
"Priority":5001,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":7004,
|
|
"Priority":1001,
|
|
"UpProbability":"<color=#26bbf9>80% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":332,
|
|
"Priority":8280,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1080,
|
|
"Priority":9710,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1081,
|
|
"Priority":9700,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1082,
|
|
"Priority":9690,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1083,
|
|
"Priority":9680,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1084,
|
|
"Priority":9670,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1085,
|
|
"Priority":9660,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2074,
|
|
"Priority":9650,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2075,
|
|
"Priority":9640,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2076,
|
|
"Priority":9630,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2077,
|
|
"Priority":9620,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2078,
|
|
"Priority":9610,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2079,
|
|
"Priority":9600,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3019,
|
|
"Priority":9006,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":3020,
|
|
"Priority":8016,
|
|
"UpProbability":"<color=#26bbf9>80% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8001,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8002,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8003,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8004,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8005,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8006,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8007,
|
|
"Priority":9940,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8008,
|
|
"Priority":9930,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8009,
|
|
"Priority":9920,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8010,
|
|
"Priority":9910,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8011,
|
|
"Priority":9900,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8501,
|
|
"Priority":9890,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8502,
|
|
"Priority":9880,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8503,
|
|
"Priority":9870,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8504,
|
|
"Priority":9860,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8505,
|
|
"Priority":9850,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8506,
|
|
"Priority":9840,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8507,
|
|
"Priority":9830,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8508,
|
|
"Priority":9820,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8509,
|
|
"Priority":9810,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8510,
|
|
"Priority":9800,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":8511,
|
|
"Priority":9790,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":333,
|
|
"Priority":8290,
|
|
"UpProbability":null,
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1086,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1087,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1088,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1089,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1090,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1091,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1092,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2080,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2081,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2082,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2083,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2084,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2085,
|
|
"Priority":9960,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2086,
|
|
"Priority":9950,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2043,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1049,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2022,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2023,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100200,
|
|
"Priority":9920,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1028,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1029,
|
|
"Priority":9990,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100100,
|
|
"Priority":9920,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100300,
|
|
"Priority":9910,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100400,
|
|
"Priority":9910,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100500,
|
|
"Priority":9900,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":101800,
|
|
"Priority":9890,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":101900,
|
|
"Priority":9880,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102000,
|
|
"Priority":9870,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102100,
|
|
"Priority":9860,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102200,
|
|
"Priority":9850,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102300,
|
|
"Priority":9840,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102400,
|
|
"Priority":9830,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102500,
|
|
"Priority":9820,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102600,
|
|
"Priority":9810,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102700,
|
|
"Priority":9800,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102800,
|
|
"Priority":9790,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":102900,
|
|
"Priority":9780,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":101000,
|
|
"Priority":9770,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":101500,
|
|
"Priority":9760,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103000,
|
|
"Priority":9750,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103100,
|
|
"Priority":9740,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103200,
|
|
"Priority":9730,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103300,
|
|
"Priority":9720,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103400,
|
|
"Priority":9710,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103500,
|
|
"Priority":9700,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103600,
|
|
"Priority":9690,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103700,
|
|
"Priority":9680,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103800,
|
|
"Priority":9670,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":103900,
|
|
"Priority":9660,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104000,
|
|
"Priority":9650,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104100,
|
|
"Priority":9640,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104200,
|
|
"Priority":9630,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104300,
|
|
"Priority":9620,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104400,
|
|
"Priority":9610,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104500,
|
|
"Priority":9600,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104600,
|
|
"Priority":9590,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104700,
|
|
"Priority":9580,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104800,
|
|
"Priority":9570,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":104900,
|
|
"Priority":9560,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105000,
|
|
"Priority":9550,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105100,
|
|
"Priority":9540,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105200,
|
|
"Priority":9530,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105300,
|
|
"Priority":9520,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105400,
|
|
"Priority":9510,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105500,
|
|
"Priority":9500,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105600,
|
|
"Priority":9490,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105700,
|
|
"Priority":9480,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105800,
|
|
"Priority":9470,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":105900,
|
|
"Priority":9460,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106000,
|
|
"Priority":9450,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106100,
|
|
"Priority":9440,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106200,
|
|
"Priority":9430,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106300,
|
|
"Priority":9420,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106400,
|
|
"Priority":9410,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":106500,
|
|
"Priority":9400,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100000,
|
|
"Priority":10010,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":100001,
|
|
"Priority":10010,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in A-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1036,
|
|
"Priority":10020,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2030,
|
|
"Priority":10020,
|
|
"UpProbability":"<color=#ff8d1e>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170001,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170002,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170003,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170004,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170005,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170006,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170007,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170008,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170009,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170010,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170011,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170012,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170013,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170014,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170015,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170016,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170017,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170018,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170019,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170020,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170021,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170022,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170023,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170024,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170025,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170026,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170027,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170028,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170029,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170030,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170031,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170032,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170033,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170034,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170035,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170036,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170037,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170038,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170039,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170040,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170041,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170042,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170043,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170044,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":1060,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":2054,
|
|
"Priority":10000,
|
|
"UpProbability":"<color=#26bbf9>100% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170045,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170046,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170047,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170048,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170049,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170050,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170051,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170052,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170053,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170054,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170055,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170056,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170057,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170058,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170059,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170060,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170061,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170062,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170063,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170064,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170065,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170066,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170067,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170068,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170069,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170070,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170071,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170072,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170073,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170074,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170075,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170076,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170077,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170078,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170079,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170080,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170081,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170082,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170083,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170084,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170085,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170086,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170087,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170088,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170089,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170090,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170091,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170092,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170093,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170094,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170095,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170096,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170097,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170098,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170099,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170100,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170101,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170102,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170103,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170104,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170105,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170106,
|
|
"Priority":9980,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170107,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
},
|
|
{
|
|
"Id":170108,
|
|
"Priority":9970,
|
|
"UpProbability":"<color=#26bbf9>70% rate in S-Rank pool<\/color>",
|
|
"TagImg":null
|
|
}
|
|
] |